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Version  History 

Version 2.0 of the  AIRS Level 2 Algorithm Theoretical Basis Document ‘AIRS- 

TEAM  RETRIEVAL  FOR CORE PRODUCTS AND GEOPHYSICAL 

PARAMETERS’ directly replaces and follows the  Version 1.7 (1 1/96) document ‘, 

AIRS-TEAM  UNIFIED RETRIEVAL FOR CORE PRODUCTS’. The essential 

algorithms  at  the  heart of the  AIRS level 2 data product  generation executive have not 

changed. 

Version 2.1 is  revised  with a new  Section 5.4 and Chapter 6. The changes are 

consistent with  the equations of  V1.7,  and provide a more  detailed explanation of the 

Final  Product  algorithm. 
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1. INTRODUCTION 

The  Atmospheric  Infrared Sounder (AIRS) is a facility  instrument  selected by NASA 

to  fly  on  the  second  Earth  Observing  System  polar  orbiting  platform,  EOS-Aqua. The 

same platform  will  also  carry  the NOAA operational  Advanced  Microwave  Sounding 

Unit, AMSU, and  the  Microwave  Humidity  Sounder of Brazil  (HSB).  AIRS is designed 

to  meet  the  requirements of the  NASA  Earth Science Enterprise  climate  research 

programs  and  the  NOAA  operational  weather  forecasting  plans. 

The  AIRS/AMSU/HSB  system  will  provide  both  new  and  improved  measurements 

of clouds,  atmosphere,  and  land  and  oceans,  with  the  accuracy,  resolution  and  coverage 

required by future  weather  and  climate  models.  Such data will  be  used to validate 

climate  models,  study  geophysical  processes,  and  monitor  trends. The purpose of this 

document  is  to  give an overview  of the important  climate  data  sets  that 

AIRS/AMSU/HSB  will  produce: 

atmospheric  temperature  profiles  with an average  layer  accuracy of  1K  in 1 km  thick 
layers  in  the  troposphere  and  1K  in 4 km layers in the stratosphere sea surface 
temperature 
land  surface  temperature  and  infrared  spectral  surface  emissivity 

0 humidity  profiles  and  total  precipitable  water  vapor 
fractional  cloud  cover,  cloud  spectral  infrared  emissivity,  and  cloud-top  pressure  and 

0 total  ozone  column  density  and  column  density  in  three  layers  of the atmosphere 
trace  gas  column  densities  (e.g., CH, and CO) and  where  possible  in  various  layers 

temperature 

within  the  atmosphere 

In  this  document  we  present  the  theoretical  basis  of the AIRS  Level 2 Products 

Algorithm.  Many  products  are  presented  in one document  because of the  basic  structure 

and  approach of the  Level 2 Products  Algorithm. In order to achieve the basic 

requirement of temperature  profile  accuracy of 1K in 1 km  thick  tropospheric  layers, a 

multi-spectral  simultaneous  retrieval of both  the  atmospheric  thermodynamic  state  and 

atmospheric  composition  is  attempted.  Hence the Level 2 Products  refer to the  basic 

thermodynamic  variables  and  trace  gas  abundance  that  control  the  outgoing  infrared 

radiance. 

1 
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The algorithm described in this document  will  be implemented as the  AIRS Level 2 

Product  Generation Executive (PGE) at  the  Goddard Space Flight Center Distributed 

Active  Archive  Center. It does not describe how the implementation will  be  made to 

meet  the operational weather forecasting needs of NOAA  where timing is of a paramount 

importance. However,  the  choice of algorithms and the structure of the  Level 2 PGE 

chosen by  the  AIRS Science Team, contains the flexibility and options to eliminate steps 

as  necessary to satisfy  NOAA  operational  needs. 

We consider this document to define  the  at-launch algorithm and refers to the 

corresponding AIRS  Level 2 PGE.  We expect that refinements will be made to the 

algorithms after launch  when  validation  and testing begins with on-orbit data from the 

AIRS suite of instruments. 

2 
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2. OVERVIEW  AND  BACKGROUND  INFORMATION 

2.1 Experimental  objectives 

The Earth's climate is a complex system with  many components and feedback 

processes  that operate on different time scales. The slow components involve the deep 

oceans, and permanent  and semi-permanent ice and  snow covers. Their response sets the 

pace for long-term climate trends  and  may introduce a delay of 50 years  or  more  in  the 

response of the climate system to external forcing. The fast components, whose scales 

range from hours to multiple seasons, encompass the atmosphere, upper ocean, the 

biosphere, as  well  as  air-land  and air-sea interactions. The fast components are coupled 

with  and controlled by the atmosphere, which drives the whole Earth environment and 

determines the  amplitude  and geographical patterns of climate change. The atmosphere 

controls many  feedback  processes  that involve the interaction of radiation  with clouds, 

water vapor, precipitation  and temperature. Thus, a knowledge of the properties of the 

atmosphere is important  not  only for understanding processes that occur within  the 

atmosphere itself; but also for understanding the feedback mechanisms among the 

various components of the entire climate system. Atmospheric  and surface 

measurements  from  AIRS  will  provide data about  these interactions with  unprecedented 

accuracy. 

The  ability of AIRS/AMSU/HSB to provide simultaneous observations of the Earth's 

atmospheric  temperature,  ocean surface temperature, and land surface temperature, as 

well  as  humidity, clouds, albedo,  and  the  distribution of greenhouse gases, makes  AIRS 

the  primary EOS instrument for investigating several interdisciplinary issues to be 

addressed  in Earth science. Among  these issues are: 

0 Improving  numerical  weather prediction. 
Demonstrating  seasonal to interannual predictions of  the effects of  El Nino and 

Characterizing the  optical properties of atmospheric constituents, cloud and 

Monitoring  variations  and trends in  the  global energy and  water cycles. 

other  transient climate anomalies. 

aerosols,  in  order to compute radiation fluxes. 

3 
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2.2 Historical perspective 

The basic  physics of a temperature sounding from earth orbit was  published in the 

late 1950's  (Kaplan 1959). Ten  years later, and shortly after Chahine (1968)  published 

the  relaxation  algorithm to invert spectral radiances for atmospheric temperature profiles, 

the first experimental temperature soundings from space were achieved using  the Satellite 

Infrared  Radiation Spectrometer (SIRS) on NIMBUS-4. This was a seven channel 

grating  spectrometer  with a spectral  resolution (UAh) of 100 in the 15 pm CO, band 

(Wark  and  Hilleary 1969). The presence of clouds in the field-of-view posed a major 

challenge. Smith  (1 968) published a monograph  on this topic and  proposed a numerical 

technique, the  N* parameter, for "cloud-clearing". Clouds become optically thick much 

quicker  in  the  infrared (15 pm = 0.0015 cm) than  at 57 GHz (0.5 cm) used  in  microwave 

sounding. Staelin et al. (1975a) demonstrated the  capability to sense atmospheric 

temperature  within  and  below clouds in  the microwave with  the Nimbus-E Microwave 

Sounder (NEMS). Unfortunately, the  mid- to lower-tropospheric vertical resolution 

achievable in  the  microwave is inferior to that achievable in  the 4.3  pm CO, band (see 

Table 2.1). A physical basis for "cloud-clearing" infrared radiances was  proposed by 

Chahine (1974). Smith et al. (1978) demonstrated the  use of the N* technique with  the 

VTPR  on  the  NIMBUS-5 satellite. Aumann  and Chahine (1976) and Chahine et al. 

(1977)  demonstrated temperature sounding  of  partly  cloudy atmospheres using 4.3 pm 

CO, and 11 pm window channels. A cloud-clearing technique combining infrared  and 

microwave data is now  applied  routinely  in the NOAA operational sounding system  as 

well as at  NASA  Goddard Space Flight Center (Susskind et al. 1984). This method takes 

advantage of  the fact that, to first order, the microwave data are not  affected by most 

types of clouds. It  makes  the  assumption that the horizontal inhomogeneity in  the  scene 

due to clouds is much larger than  the  inhomogeneity due to temperature profile changes 

compared  to  the scale of the  microwave field-of-view. By 1978, the HIRS-2 sounder 

(Smith, et al., 1979), a radiometer with  19 channels between  3.7 pm and  15 pm and a 

spatial  resolution of about  17 kilometers, combined with  the Microwave Sounding Unit, 

MSU (a follow-up to NEMS),  with 4 channels near  the 57 GHz  oxygen  band,  became  the 

first of the  TIROS  Operational  Vertical Sounders (TOVS). The  NOAA Polar Orbiting 

4 
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Sounding System was  recently  upgraded  with  the HIRS-3, AMSU-A and AMSU-B, 

launched  on  NOAA-15 in 1997. 

2.3 Instrument  characteristics 

AIRS is a continuously operating cross-track scanning sounder, consisting of a 

telescope that feeds an echelle spectrometer. The spectrometer analyzes thermal infrared 

radiation  between  the  wavenumbers of 650 cm" - 2700 cm",  with  an average resolving 

power of 1200. This spectral  region includes the important temperature sounding regions 

in the 4.2 and  15 pm CO, bands,  water  vapor sounding in  the 6.3  pm water band and 

ozone  sounding  in  the 9.6 pm region. AIRS  has  2378 detector elements at the focal 

plane, arranged in  several linear arrays. Each detector has a noise-equivalent difference 

temperature on  the order of  0.2K (at  250K)  seen in each 1.1" Instantaneous Field Of 

View (IFOV) as  shown  Figure 2.1. 

During each  scan,  the rotating external mirror scans the underlying Earth between 

49" either side of the  nadir.  In each scan line, there are 90 integration periods (Earth 

scenes or footprints), two  views of dark space, one view of an  internal radiometric 

calibration target, and  one  view  of  an  internal  spectral  calibration target, for a total of 94 

sets of measurements. The scan  is  repeated every 8/3 seconds. The downlink data rate 

from the  AIRS  instrument  is  1.2  Mbit/sec. 

AMSU AIRS' 
FIGURE 2.1  AIRS/AMSU SCHEMATIC FOOTPRINT PATTERN 

5 
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Proper  interpretation of AIRS data requires the  use of co-located temperature and 

humidity data from a passive  microwave sounder. Therefore, the Advanced Microwave 

Sounding Unit  (AMSU) instrument will fly as part  of the AIRS instrument complement 

on EOS. This instrument  (which is flying on  NOAA-15  and  will also fly on the NOAA- 

L, -M,  and  -N  weather satellites) is composed of two subsystems, AMSU  and  the 

Humidity Sounder of Brazil (HSB) (formerly  the Microwave Humidity Sounder, MHS). 

AMSU is a cross-track scanning multi-spectral microwave radiometer, with a 3.3" 

IFOV and  15 spectral channels (23 GHz - 90 GHz). Each cross-track scan  produces 32 

sets of measurements (30 Earth looks, 1 dark space calibration, and 1 internal  blackbody 

radiometric calibration). The scan repeats every 8 seconds, being synchronized with 

every 3 AIRS scans (via the spacecraft master clock). 

HSB is a cross-track scanning multi-spectral microwave radiometer, with a 1.1 O 

IFOV  and 4 spectral channels (1 50 GHz - 183 GHz). One channel of those of AMSU-B 

was eliminated by our  Brazilian partners as a cost saving measure. Each cross-track scan 

produces 92 sets of measurements (90 Earth looks, 1 dark space calibration, and 1 

blackbody calibration). The scan  repeats every 8/3 seconds, being synchronized every 

third scan line. 

The overlap between  AIRS  and  AMSU footprints in  the cross-track direction is 

illustrated in Figure 2.1.  Note  that  HSB  and  AIRS  will share approximately  the same 

footprints. The current retrieval system produces one set  of core products per  AMSU 

footprint. 

The  AIRS  instrument also contains four visiblehear-IR channels working  in  the 0.4 

to 0.95 micron  range.  With a nadir  pixel size of 2.3 km,  their  primary function is to 

indicate when  an  infrared field-of-view (- 15  km  at nadir) is  highly  variable or contains 

low-clouds. See the  Level lb  ATBD,  Part 2, for a complete description of the 

visiblehear-IR channels. 

6 
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2.4 Measurement  Strategy 

During  the  past 20 years, considerable progress has been made in passive infrared 

remote  sensing of temperature profiles. Currently, the combination of the High 

Resolution Infrared Sounder (HIRS) and  the  Microwave Sounding Unit (MSU)  provides 

atmospheric  temperature profiles with  an average RMS error of approximately 2.0 K, 

with a vertical  resolution of 3 to 5 km in  the troposphere. This accuracy, however, falls 

short of the  requirements for numerical  weather  prediction models. At  present  the  need 

for improved sounding is  accentuated by the fact that, during the  past decade, models 

have evolved more  rapidly  than the capabilities of satellite-borne temperature sounders to 

supply  accurate data. The inability  of current sounders to match the vertical and 

horizontal  resolution of general circulation models  and difficulties in correcting for the 

Band ?J A 1  Half-width  in Remarks 
scale heights 

14.5 pn 100 2.4 VTPR/HIRS 8 
A 

B 
5? 15.0 pn 1200 1.6 AIRS 

15.0 pn 10000 1.4  Wings of lines 

3 j  60 GHz 1 0  1.3 AMSU 

15.0 pn 100 1.6 VTPR 
A 60 GHz ~ 0 0 0  1.5 AMSU 
8 

4.46 pn 100 1.3 HIRS 

4.18 pn 1200 0.69 AIRS 
a 
b I 4.18 pn 10000 0.60 Wings of lines 

TABLE 2.1 CONTRIBUTION FUNCTION HALF WIDTH AS A FUNCTION 

OF SPECTRAL RESOLUTION 

effects of clouds are the  major deficiencies to be improved upon. 

The  limitation  in  vertical  resolution  is caused mainly by the broadness of the 

contribution functions (i.e., the  weighting function multiplied by the Planck function - see 

Figure 2.2) of current instruments. When  the contribution functions are broad, emitted 

7 
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energy  reaching  the satellite in  each  channel  will  have components originating from a 

thick layer of  the atmosphere, thereby  making  the  discrimination of fine-scale vertical 

details practically impossible. This problem  is exacerbated by  the limited number of 

HIRS channels. Furthermore, because of the broad  width of the contribution functions 

(see Table 2.1) and the difficulties in eliminating cloud contamination effects, as well  as 

surface emissivity, 0,, H,O, and  other  minor constituents, the RMS errors in the retrieved 

temperature profiles  remain  high.  AIRS takes advantage of the  ability to sound  between 

lines and  the  temperature dependence in  the  high-J lines in the 4.18 pm CO, band to 

sharpen  the  weighting functions. 

Experience with  the current generation of sounders has  shown  that amalgamation of 

microwave  and  infrared data is a very  useful combination for accurate elimination of 

most effects of clouds. Microwave observations in  the 50 GHz region are not affected by 

FIGURE 2.2 SCHEMATIC ILLUSTRATION OF A CONTRIBUTION FUNCTION AS A FUNCTION 
OF ATMOSPHERIC PRESSURE WHERE B IS THE PLANCK FUNCTION, ‘T IS THE 

TRANSMISSION TO SPACE, AND P IS THE PRESSURE 

most  types of clouds,  which allows them to be  used  as an accurate filter to retrieve a 

variety of clear-column parameters. Some microwave channels are affected slightly by 
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the surface, especially over land,  and  are less effective for filtering out low clouds. 

Visible channels are needed  here as a diagnostic to discriminate between low-level clouds 

and different types of terrain. 
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All  AIRS/AMSU/HSB sounding channels, including the visible channels, must 

observe the same field-of-view at approximately the same time. This simultaneity 

requirement will insure that all the channels observe the same clouds and, consequently, 

210 I , , , 1 " " I " " l "  
1500  2000 
Wavenumber, cm" 

2500 

FIGURE 2.3 SIMULATED AIRS  BRIGHTNESS  TEMPERATURE SPECTRA FOR CLEAR 
CONDITIONS 

TABLE 2.2 AI1 

Beginning Ending ~ Beginning  Beginning 
wavelength wavelength ~ wavenumber 

wavenumber 
hl h2 I p1 c12 

3.736 3.917 1 2676.37 2553.04 
3.915  4.1  10  2554.34 I Nil:;; 4.1 10 4.329  2433.09 

- 

4.327 4.609 23 1 1.02 2169.90 
6.200 6.493 1612.83 1540.03 

" 6.550 1 6.850 1526.62 j 1459.85 
6.936 j 7.477  1337.45 
7.475 I 7.792  1337.88 1 1283.35 
7.861 1 8.220 , 1272.18 1 1216.55 

1 1441.84 ~ 

8.807 ~ 9.480 ~ 1135.42 ~ 

1054.90 
9.565 10.275 1045.48 973.24 
10.275 10.985  973.24 910.33 

____ 11.070 1 11.751 1 903.31 1 _ _ ~  850.98 
11.743 ~ 12.685 ~ 85 1 . 5 c  
12.799  13.746  78  1.32 727.50 
13.738 I 14.553 ~ 727.92 1 687.13 
14.667 1 15.400  681.79 I 649.35 

VACUUM) 
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the  same cloud correction applies to  all  the frequencies. 

Infrared  Measurements 

High  spectral  resolution  in  the  infrared is key  to achieving high vertical resolution. 

In  the  troposphere,  the ability of microwave channels to provide  high vertical 

discrimination  is  inherently  weak.  High J-lines in  the  R-branch of the 4.18 pm region, in 

which  the CO, absorption coefficient increases  rapidly  with increasing temperature, 

provide  the  highest possible lower tropospheric  vertical  resolution of any  part of the 

infrared  spectrum  and this resolution enhancement can  be  captured only through  high 

spectral  resolution measurements. In  addition, a sufficiently large number of 15 pm 

infrared channels are required in  the  upper troposphere and  adjacent lower stratosphere; 

and this requirement  can also be satisfied as a consequence of high spectral resolution. 

High spectral resolution also permits selection of sounding channels not contaminated by 

water  vapor lines or by emission from other active gases, and provides spectrally clean 

window-channels for surface measurements. The effect of the surface emission must  be 

separated from the emission of the lower troposphere to provide accurate temperature 

profiles  near  the surface. 
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Channel  Center  Frequency  Bandwidth  Function I No. (MHz) 

10 
11 
12 
13 
14 
15 

23.800 GHz 
3 1.400 GHz 
50.30 GHz 
52.800 GHz 
53.596 k0.115 GHz 
54.400 GHz 
54.940 GHz 
55.500 GHz 
57,290.344 MHz 

f9 -1-217 MHz 
f9 +322.2+.48  MHz 
fg &322.2&22 MHz 
f9 +322.2&10 MHz 
f9 k322.2k4.5 MHz 
89.0 GHz 

(= f9> 

270 
180 
180 
400 
2x 170 
400 
400 
330 
330 

2x78 
4x36 
4x16 
4x8 
4x3 
6000 

Water Vapor  Burden 
Surface Temperature 
Surface Temperature 
Surface Temperature 
Tropospheric Temp 
Tropospheric Temp 
Tropospheric Temp 
Tropospheric Temp 
Stratospheric Temp 

Stratospheric Temp 
Stratospheric Temp 
Stratospheric Temp 
Stratospheric Temp 
Stratospheric Temp 
Cloud  Top/Snow 

TABLE 2.3 AMsu CHANNEL  SET  (3.3-DEGREE BEAM DIAMETER) 

The  infrared channels to be  used for retrieving such parameters as temperature and 

humidity profiles, ocean  and  land surface temperature, clouds and 0,, must  be selected 

carefully. This is  aided by  the  availability of narrow band-pass channels that are located 

away  from  unwanted  absorption lines. It also takes advantage of the unique spectral 

properties of several regions,  such  as  the  high J-lines in  the  R-branch of  the 4.3 pm CO, 

band  and  very clear window channels near  3.7 pm. A typical AIRS spectrum is 

presented  in Figure 2.3  and Table 2.2  presents the precise  AIRS  array specifications. 

Microwave  Measurements 

AMSU consists of  12 channels within  the 50-60 GHz  portion of the oxygen  band  to 

provide temperature and  precipitation information. In addition, AMSU contains three 

window-channels  at 24, 3 1 and 89 GHz to provide total precipitable water, cloud liquid 

water content and  precipitation measurements. These channels will also be used to 

provide  information  on  sea-ice concentration and  snow cover. The  3-dB  beam diameter 
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of  AMSU  is  3.3", corresponding to about 50x50 km  at nadir. The  set of 15 microwave 

Channel  Center  Frequency I No. (GHz) 
Bandwidth  Function 

(GHz) 

1" 
2 150.0 
3 183.31 k 1.0 
4 183.31 k 3.0 
5 183.31 f 7.0 

4000 Water  vapor 
2x500 Water  vapor 
2x1000 Water  vapor 
2x2000 Water  vapor 

*Channel 1 (89 GHz)  has  been deleted for the  HSB 
TABLE 2.4.  HSB  (AMSU-B) CHANNEL  SET  (1.1-DEGREE BEAM DIAMETER) 

channels is given  in Table 2.3. 

A second  microwave instrument package  will also be  provided. The Microwave 

Humidity  Sounder of Brazil (HSB), a copy of AMSU-B, contains one window-channel  at 

150 GHz to obtain  high-resolution measurements of precipitation, snow cover and sea-ice 

with  the  same  spatial footprint as  AIRS. Three additional channels in  the  183  GHz  water 

vapor line will  be  used to improve the accuracy of atmospheric  humidity profiles and 

total  precipitable  water  vapor. The 3-dB  beam diameter of HSB  is  1.1 O ,  corresponding to 

about  16 km  at  nadir. The full  set of  HSB (AMSU-B) channels and  their specifications is 

given in Table 2.4. 

Visible  and  Near-infrared  Measurements 

AIRS  will also carry a small  set of visible channels as a diagnostic aid  in accounting 

for low-level clouds. In addition, the visible channels are needed to diagnose land surface 

inhomogeneities for the  determination of surface temperature and emissivities and 

enhance the  synergy  with  the Moderate Resolution Imaging Spectroradiometer (MODIS) 

on EOS. A set  of visible and  near-infrared channels between 0.4 and 0.95 pm is 

presented  in  Table  2.5. There are 36 spots within  one  AIRS  infrared footprint. 
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Channel  No.  Frequency Range (pm)  IFOV 

0.40 - 0.44 
0.58 - 0.68 
0.71 - 0.98 
0.40 - 1.06* 

1.1"/6 
1.1"/6 
1.1"/6 
1.1"/6 

* warm silicon diode cutoff 
TABLE 2.5. VISIBLE CHANNEL SET 

Treatment of Clouds and Aerosols 

Clouds are an  important  modulator of the infrared radiation emitted by the  Earth 

surface and atmosphere. For this reason,  the  retrieval of basic  cloud properties (cloud 

fraction, cloud-top height, and cloud-top temperature) is an integral part of the  Level 2 

algorithm.  Our  approach to dealing with clouds is an extension of those  discussed by 

Smith (1968), Chahine (1974), and Chahine (1977). It involves a multi-step, iterative 

process to retrieve surface, atmospheric, and cloud properties, and  is described fully  in 

Section 5.2. Conceptually, the  approach relies on  the fact that cloud amount  tends to vary 

appreciably  among  nearby  15  km  AIRS footprints, but that other  atmospheric and cloud 

properties (averaged within  the footprints) are more uniform. This means  that  radiance 

differences between  adjacent  AIRS footprints are primarily caused by changes in cloud 

amount.  Adjacent, multi-spectral observations can  then  be  solved  in a least squares sense 

for the  infrared  radiance  that  is  common to the clear portions of all fields of view. This is 

called the  "cloud-cleared  radiance". Since the effect of clouds has  been  removed, 

atmospheric  and surface properties can be retrieved from these radiances as if no clouds 

were present. Differences between  the observed and cloud-cleared radiances  can also be 

used to determine cloud  properties.  Note  that  AIRS does not  need to have a cloud-free 

footprint  in order to perform this analysis (but some  point  within one of  the footprints 

must  be clear), and  that  each footprint may contain multiple cloud layers. It should also 

be  noted  that existing systems (TOVS) have proven this approach to be effective. The 
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higher  spectral  resolution  offered by AIRS,  however, allows this technique to be 

exploited to  a higher degree than ever before. 

The  power of the cloud-clearing approach is that  minimal assumptions are made 

about  the cloud’s radiative properties while  retrieving  the state of the atmosphere (see 

Section 5.2). This flexibility means  that  any  aerosols that interact with IR radiation  can 

be  treated  as  an  unusual  cloud layer. As  with  water clouds, there still must  be a clear 

region  somewhere  within  each AMSU footprint. Thus, narrow smoke plumes are not a 

problem,  but a uniform dust layer extending more  than 45 km across would get folded 

into the “clear-column” radiances  and  could degrade the atmospheric retrieval. To assess 

the  impact of  such  horizontally  widespread aerosols, we first note that stratospheric 

sulfuric acid aerosols are optically  thin  in the IR, except after large volcanic eruptions 

such  as Mt. Pinatubo. Tropospheric anthropogenic aerosols are also optically thin to 

AIRS  because of their  small size. Examination of POLDER  and  AVHRR observations 

(Druze et al. 1999,  Higurashi  and  Nakajima 1999) covering visible to IR wavelengths, 

indicates that  at certain times of the  year large dust storms in  some deserts can create 

areas  with appreciable optical depth. The  Arabian Sea, off  the coast of West Africa is 

one  such region. Ackerman (1997) has previously found thermal-IR brightness 

temperature changes of 2 K may result from dust storms. We therefore conclude that 

aerosols may  impact  AIRS  retrieval  accuracy  only in limited spatial and temporal 

regions. This will  be further investigated after launch as part of the  AIRS  validation 

activities. 
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3 AIRS/AMSU/HSB DATA PRODUCTS 

3.1 Standard  Products 

The AIRS  Level 2 PGE produces (or has  options to produce) four different files in 

EOS HDF Swath format available at  launch: 

Standard  Product 
Cloud-Cleared  Radiance 
Support Product 
Quality  Assessment Support Product 

Successive files provide  increasingly detailed information  about the AIRS level 2 

retrievals. It is worth  noting that each file encompasses one  ‘granule’ of  AIRS data. 

Granules are formally  defined as the smallest aggregation of data that  is independently 

managed  (i.e., described, inventoried, retrievable). An AIRS granule has  been  set as 6 

minutes of data. This will  normally correspond to approximately 1/15 of  an orbit but 

exactly 45 scanlines of  AMSU data or 135 scanlines of AIRS  and  HSB data. 

The Standard  Product consists of retrieved estimates of cloud and surface 

properties,  plus  profiles of retrieved temperature, water  vapor, ozone and a flag indicating 

the  presence of cloud ice or water. Estimates of  the errors associated with these 

quantities will also be part of the Standard Product. The profile vertical resolution is 30 

points  total  between 1000 mb and .02 mb; WMO pressure levels are used in  the 

troposphere  and  lower stratosphere. The Standard Product contains quality assessment 

flags in  addition to retrieved quantities. Its intended audience  is climate and  weather 

researchers  with  limited interest in  the  retrieval  algorithm. The Standard Product  will  be 

generated  at  all locations atmospheric soundings are  taken. 

Cloud-Cleared  Radiances are produced  along  with  the  AIRS Standard Product, as 

they  are  the  radiances  used to retrieve the Standard Product. Nevertheless, they are an 

order of magnitude  larger  in data volume  than  the  remainder of the Standard Products 

and,  many  Standard  Product users are expected to have little interest in  the Cloud Cleared 

Radiance.  For  these reasons they are a separate output file, but like the Standard Product 

will  be  generated  at  all locations. 
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The Support  Product includes higher vertical  resolution profiles of the quantities 

found in  the Standard Product,  plus intermediate output (e. g., microwave-only retrieval), 

research products such  as  the  abundance of trace gases, and detailed quality assessment 

information. The Support Product  profiles contain 100 levels between 1 100 and .016 mb; 

this higher  resolution  will  simplify  the  generation of radiances using forward models, 

though  the  vertical  information content is  no greater than  in  the Standard Product 

profiles. The intended  users of the Support Product are researchers interested in 

generating forward  radiance,  or  in examining research products, and  the  AIRS algorithm 

development  team. The Support Product  will  be generated at  all locations as Standard 

Products. 

The final AIRS  Level 2 data product  is the Quality  Assessment  Support  Product. 

This output is intended to provide  insight into the detailed workings of the AIRS  retrieval 

algorithm, and  will  contain a large number of intermediate retrieved quantities, their 

estimated uncertainties, and associated quality assessment parameters. Because of its 

large size, the quality  assessment  Support Product will  be  generated  only  at those 

locations where  the  AIRS  retrieval algorithm is  known to be functioning poorly,  based 

upon  quality  assessment information. The intended users of the  Quality  Assessment 

Support  Product are the  AIRS  retrieval algorithm development team, and scientists 

validating the performance of these algorithms, primarily  at  the Team Leader Science 

Computing  Facility  (TLSCF)  at JPL. It  will  not  be generated at  the GSFC DAAC. 

3.2 Research  Products 

AIRS  will  produce a number of research products that  will  be developed and  tested 

after launch. Primary  among these are trace constituent profiles of CO and  CH,, 

Outgoing  Longwave  Radiation  (OLR)  and Clear Sky  Outgoing  Radiation (COLR), and 

possibly  total CO, burden. These are  described  briefly  below. 

3.2.1 OLR  and  COLR 

The ability to compute  OLR  and  COLR from sounding data  was  demonstrated  with 

the  TOVS Pathfinder Path A Dataset (Susskind et al., 1997; Mehta  and Susskind, 1999a; 
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Mehta  and Susskind, 1999b). The approach  used for TOVS data is  to compute total OLR 

using a forward model  and  the retrieved quantities: surface skin temperature, 

temperature-, moisture-, 0,-profiles, cloud top pressure and  radiatively effective cloud 

fraction  (given by the  product of the portion of the scene covered by clouds and  the  cloud 

emissivity  at  11 pm). COLR  is computed analogously, but setting the effective cloud 

fractions to zero. It  represents the radiation  that  would have gone to space if no clouds 

were present. The  TOVS Pathfinder OLR  and  COLR has been  shown  to  be  at least 

comparable to me  ERl3E  products. 

AIRS  OLR  will  be  computed  in  an analogous way,  but  will also take into account  the 

surface spectral emissivity, the cloud spectral emissivity, and  trace constituent profiles. 

Comparison of  AIRS  OLR  and COLR with  values determined from CERES  will  tend to 

validate  in a radiative  sense  the  AIRS products, and  will also cross validate the  CERES 

values. More importantly, AIRS  will  be able to explain the spatial  and temporal 

variability of the  CERES  OLR  and  COLR  in terms of the  variability  of the geophysical 

parameters  on  which  they  depend. 

3.2.2 Trace  Gases 

Preliminary studies, presented  at  AIRS Science Team meetings,  have  shown  that  the 

AIRS instrument will  be capable of measuring carbon dioxide (CO,),  methane  (CH,),  and 

carbon  monoxide (CO). The  retrieval  methodology is identical to the final product 

retrieval, discussed in section 5.4. We  will attempt the trace gas retrievals after  all  other 

AIRS products have  been determined and validated. CO,  and  CH, products must have an 

accuracy better than a fraction of a percent to be  useful for seasonal and climate studies. 

Also,  the CO retrieval  will  be difficult due  the  small number of  AIRS channels sensitive 

to CO.  We expect that  only cloud-free AMSU footprints will  be  used to generate a trace- 

gas products and  that  thses  may  be spatially or temporally  averaged over 100's of km's to 

achieve  the  desired  accuracy. 
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4 THE  FORWARD  PROBLEM 

In the following, atmospheric radiative transfer or the ‘forward  problem’  will  be 

discussed. Because the  retrieval  methodology utilized by  the  AIRS team depends  on  the 

ability  to  accurately determine the outgoing radiance, particular attention will  be  paid to 

errors in the spectroscopy and errors in modeling the outgoing radiation -- the rapid 

forward  model. To overcome these error sources, a process known as tuning  is  used  to 

remove systematic effects and  is  described  in  section 5.1. 

4.1 Radiative  Transfer of the  Atmosphere  in  the  Microwave 

At the frequencies measured by AMSU and HSB, the most important absorbing 

gases in  the atmosphere are  oxygen  and  water  vapor. The oxygen  molecule  has  only a 

magnetic dipole moment,  and its lines are intrinsically much  weaker  than  those  which 

result from the electric dipole of water  vapor; however, the  much greater abundance of 

oxygen  in  the atmosphere more  than compensates for this difference. When clouds are 

present, liquid  water also plays a role in radiative transfer. However, fair-weather cirrus 

composed of ice particles small  compared to the  wavelength are effectively transparent to 

microwave radiation. 

4.1.1 Oxygen 

The dipole moment of 0, is due to two unpaired electron spins and  thus  it  can  be 

expressed in  terms of fundamental constants. Hence, the intensities of  the 0, spin- 

rotation transitions are among the most  precisely calculable of any  molecule. The values 

used are from the JPL Submillimeter, Millimeter, and Microwave Spectral Line Catalog 

(Poynter and Pickett, 1985). These transitions comprise approximately 30 lines between 

50 and 70 GHz  and an isolated line at 118.75 GHz (which is  not  observed by  AMSU  or 

HSB). Several groups have  measured  the pressure-broadened widths of  the lines in  the 

50-70 GHz  band. The most  accurate measurements are probably those of Liebe et al., 

(1977) and  Liebe  and  Gimmestad (1 978), where  the errors were estimated to be I 1 % for 

most of the  stronger lines. 
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The characteristic of oxygen’s microwave spectrum that introduces difficulty for 

construction of models  is  the significant degree of line mixing. In the Millimeter-wave 

Propagation  Model (MPM92) (Liebe, et al., 1992), line mixing  was treated by a first- 

order expansion in pressure. The coefficients for this expansion were determined by a 

constrained linear fit to  laboratory measurements made  on  an 0, - N, mixture over the 

frequency  range of 49-67 GHz  and  the temperature range  279-327 K, with a noise level 

of approximately 0.06 dB/km. Within that range, the  model represents the measurements 

to 2 0.2 &/km (see for example, Figure 4.1.1).  It is possible that extrapolation to colder 

temperatures  introduces larger errors. Recent measurements from the NASA ER-2 at  52- 

56 GHz seem to be  in agreement  with  the model, however. There is also some indication 

from aircraft  and  ground-based atmospheric measurements that  model errors in  oxygen 

zenith  opacity  may  reach  10-20%  near 30 and 90 GHz. However, the  main absorber at 

those frequencies is water. 
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FIGURE 4.1.1. ATTENUATION MEASUREMENTS OF TEST AIR AT 279K AND 7 PRESSURES, 
COMPARED WITH THE MPM 92 MODEL (FROM LIEBE ETAL, 1992). 

4.1.2 Water  Vapor 

Water  has a weak  rotational line at  22.23  GHz  that  is  semi-transparent  at  normal 

atmospheric  humidity,  and a much  stronger,  opaque line at 183.31 GHz. Intensities of 

these  lines  have  been  calculated  and  tabulated by Poynter  and  Pickett  (1996  version of 

JPL line  catalog)  and  Rothman et al., (1992)  (HITRAN),  among others. The HITRAN 

intensities  are  used  here.  For  the 22-GHz line, the  JPL  intensity  is  higher  than  the 

HITRAN  value by 0.3%. There is a measurement by Liebe et al. , (1969) (estimated error 

0.3%) which  is  3.5%  lower  than the HITRAN  value.  At  183  GHz,  the  JPL  line  intensity 

is 0.1 % higher  than HITRAN. Widths  have  been  measured by Liebe et al., (1  969)  and 

Liebe  and  Dillon  (1969)  at  22  GHz  with  estimated  uncertainty of 1 % for  both  self  and 
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foreign-gas broadening;  and by Bauer et al., (1989) at 183 GHz, with uncertainties of 

0.5% for self-broadening  and  1.6% for foreign-gas broadening. However, Gamache et al. 

(1 994) concluded from a survey of measurements of  many H,O lines that, in general, 

measured line widths should be considered to have uncertainties of 10-15%. 

At frequencies away from these two lines, microwave  absorption  by  water  vapor  is 

predominantly  from  the continuum, which is attributed to the  low-frequency  wing of  the 

intense infrared  and submillimeter rotational  band lines. In  the microwave part of the 

spectrum, the foreign-broadened component of the continuum is stronger than  the self- 

broadened  component, for atmospheric  mixing ratios. Measurements of continuum 

absorption  as a function of temperature have been  made  at  various frequencies by Liebe 

and Layton (1987)  and  by Bauer’s group (Godon, et al., 1992; Bauer et al., 1993, 1995). 

There are also numerous measurements at single temperatures and frequencies in  the 

laboratory, and  in  the atmosphere where temperature and  mixing ratio are variable. The 

measurements do not  present  an entirely consistent picture. It has  been  argued by 

Rosenkranz  (1998b)  that  the  most satisfactory overall agreement with laboratory and 

atmospheric  measurements of the water continuum is  obtained  with a combination of  the 

foreign-broadened  component from MPM87 (Liebe and Layton, 1987) with the self- 

broadened  component  from MPM93 (Liebe et al., 1993). The combined model  is  used 

here. 

4.1.3 Liquid  Water 

It  is  useful to distinguish  between precipitating and non-precipitating clouds with 

respect to their interactions with  microwaves. Over the range of wavelengths  measured 

by  AMSU  and  HSB, non-precipitating droplets (with diameters of 50 ym or less) can be 

treated  using  the  Rayleigh small-droplet approximation. In this regime,  absorption  is 

proportional to the  liquid  water  content of the air, and scattering can  be neglected. The 

model for the  dielectric constant limits the  accuracy of these calculations. The double- 

Debye  model of Liebe et al., (1991) is  used  here;  it has an  estimated maximum prediction 

error of  3% between 5 and 100 GHz, and  10% up to 1 THz. Precipitation, on  the  other 

hand, requires Mie  theory to calculate both  absorption  and scattering. The latter is 
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generally  not  negligible,  and  is  the  dominant term at some wavelengths. In  the case of 

convective storms, scattering from ice at  high altitudes is often the  most  important 

process.  In simulations so far we  have  not considered scattering, and the rapid 

transmittance  algorithm  uses  only  the small-droplet approximation for cloud liquid water. 

4.1.4 Rapid  Transmittance  Algorithm 

The  physical  retrieval algorithms used for AIRS/AMSU/HSB do radiative transfer 

calculations for each  profile  and  hence  need a computationally efficient transmittance 

algorithm. The  microwave  algorithm computes an effective channel transmittance 

between two adjacent pressure levels as 

where pv is the  water  vapor  column  density of the (PI, P2) layer, pL is its liquid water 

column density, and  the coefficients a, f l ,  y, are calculated for each layer and channel. 

They  implicitly  depend  on temperature, pressure, and  the angle of observation; p also 

depends implicitly on pv. For AMSU  channel  14, a has a weak dependence on  the  local 

geomagnetic field. The magnetic field is currently calculated by a fifth-order spherical- 

harmonic  representation  that has an  accuracy of a few microteslas. The coefficient a 
includes the opacity due to 0, and a small contribution from pressure-induced  absorption 

by N,. Parameterization of the coefficients uses approximations described by 

Rosenkranz (1995) for oxygen-band  or  window-type channels. The oxygen-band- 

channel coefficients are computed  on a set of fixed pressure levels and  then  linearly 

interpolated to the  pressure levels of  the  present retrieval, which can be  variable  (as is the 

case for the surface pressure).  Window-channel coefficients use analytic approximations 

for far-wing line and continuum absorption. Channels near  the  two  water  lines  (AMSU 

channel 1 and  HSB channels 3-5) use a Lorentzian-line calculation for the nearby line, 

with  the contributions of other lines treated  in  the  same  way  as for a window channel (see 

Rosenkranz, 1998a). The  local  water-line parameters, the  water continuum, and  the 

liquid-water  absorption are interpolated  from a table as functions of temperature. 
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The  retrieval algorithm described in Section 5.2 also makes  use of the derivatives 

daldt and  dp/dp,,  which are computed in  the  rapid algorithm by appropriate analytic 

expressions corresponding to  the local-line and continuum components. 

The  transmittance of multiple layers is calculated by taking the product of the 

transmittances for each layer. This transmittance is  then  used  in  the radiative transfer 

equation to compute brightness temperature: 

ps 
0 = IT(P) < dT(0,P) > +ET, < T(O,P,) > 

ps 

0 

+(1- E) < .c(O,P,) > IT(P) < dT(P,,P) > +(1 -&)ec T(O,P,) >2 
0 

(4.1.2) 
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LINE ALGORITHM) FOR AMsu CHANNELS ( 1 - 15) AND HSB CHANNELS ( 16-20). VERTICAL 

LINES INDICATE k 1 STANDARD DEVIATION. HERE , & I S  THE SURFACE EMISSITIVITY. 

where  T(P)  is  atmospheric temperature at level P, T, and P, are  the surface 

temperature and  pressure, 0, is the cosmic background brightness temperature, and E is 

the  emissivity of the surface, assumed to be smooth here. 

The ability of  the  rapid algorithm to approximate a line-by-line  calculation  was 

tested  on a set of 300 profiles from the TOVS Initial Guess Retrieval (TIGR) (Chedin et 

al., 1985) ensemble. The first 100 profiles from each of the tropical, mid-latitude, and 

polar groups were  used.  Figure (4.1.2) shows brightness temperature errors (mean k.1 

standard deviation) at  nadir,  with surface emissivity = 0.7. For the channels that are not 

opaque (1-5, 15-17,  19  and 20), these brightness temperature errors  depend  on surface 
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emissivity. The value E = 0.7 is typical of ocean  at  the highest frequencies, and 

intermediate  between  ocean  and land at  the lowest frequencies. Errors for higher- 

emissivity  land surfaces are smaller than  in  Figure 4.1.2. The errors for channel 14 

include  the consequences of the magnetic field approximation. 
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FIG. 4.2.1 COMPARISON OF MONOCHROMATIC BRIGHTNESS TEMPERATURES TO 

BRIGHTNESS TEMPERATURES CONVOLVED WITH THE AIRS SPECTRAL RESPONSE FUNCTION. 

4.2 Radiative  Transfer  of  the  Atmosphere  in  the  Infrared 

Physical retrievals of atmospheric parameters attempt to minimize the difference 

between  computed  and observed channel radiances. The  accuracy  of  the  retrieval is 

therefore  directly  related to the  accuracy of the computed radiances. AIRS measures the 

convolution of the up-welling monochromatic  radiances  with  the instrument spectral 

response  function (SRF). An exact calculation of the observed radiances therefore 

requires  the  convolution of simulated monochromatic radiances. These computed 

radiances are complicated functions of the atmospheric state (temperature, pressure, gas 

amount),  the  gas transmittances, and  the  AIRS SRFs. Since the atmospheric emission 

lines can  have  widths as small as -0.001 cm",  the  wavenumber  grid scale for the  radiance 

calculation  must  have a similar spacing. This small  grid spacing, combined with the 

time-consuming SRF convolutions, makes a monochromatic calculation of radiances 

orders of magnitude too slow for practical  use. Instead, we  must use a fast radiative 
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transfer  model  that is based  on  appropriately convolved atmospheric transmittances for 

each spectral channel. Then  the  radiative transfer can  be  performed  on a per-channel 

basis rather  than  on a finely spaced  monochromatic  wavenumber grid. 

The starting point for understanding  the  AIRS radiative transfer algorithm (AIRS- 

RTA)  is  the  monochromatic radiative transfer equation. The monochromatic radiance 

leaving  the top of a non-scattering  atmosphere  is 

(4.2.1) 

where B(v,T) is  the  Planck  function emission at frequency v and temperature T, 

z(v, p, e) is the transmittance  between  pressure p and  the satellite at  viewing angle 8, and 

T,, E,, and ps refer to the Earth's surface temperature, emissivity, and reflectivity 

respectively,  and Rdis the  reflected  downwelling  thermal  radiance. The solar radiance 

entering at  the  top of the atmosphere is  represented by H,,,. The dependence of 

temperature  and angle on  pressure (altitude) has been  suppressed  in the above equation, 

as  well  as  the  dependence  of  the  transmittances  on temperature and gas abundance. Due 

to lack of space, a detailed  explanation of our implementation of the reflected solar and 

reflected  thermal terms will  not  be  given here. 

The  AIRS-RTA allows the  integration of the radiative transfer equation over 100 

atmospheric layers to  be  performed  in a discrete form. Ignoring  the last two terms in 

Equation (4.2. l), a discrete form of the radiative transfer equation can be  written 

conveniently  as 

(4.2.2) 

where  the  atmospheric layers are numbered from space to the surface, 1 to N 

respectively. B(T(i)) is the  Planck  emission for layer i at  temperature T(i), zz,iis the 

transmittance  from layer i to space, inclusive, and  f(v-v,)  is the AIRS SRF for the  channel 
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centered  at v,. The  emissivity  and  Planck  function  are  easily  removed from inside  the 

integral,  leaving  us  with  the  channel-averaged form of the  radiative  transfer  equation, 

(4.2.3) 

where  all  terms  now  represent  appropriate  channel-averaged  quantities. 

The polychromatic  approximation  introduced  in  the  above  relation  replaces  the 

monochromatic  layer-to-space  transmittances  with  transmittances  convolved  with  the 

SWs. This in  effect  convolves  the  outgoing  radiances,  allowing us to  do radiative 

transfer  at just a single  frequency  per  channel.  In  most  cases,  the  AIRS  channel  radiances 

calculated from the above  equation  using  convolved  layer-to-space  transmittances  differ 

from the convolved  monochromatic  AIRS  channel  radiances by 5 0.05 K, assuming you 

had  perfect  layer-to-space  convolved  transmittances  in  hand. 

Figure  4.2.1  illustrates  the  large  difference  in  spectral  resolution  between the 

upwelling  monochromatic  radiation  and  an  AIRS  brightness  temperature  spectrum. 

Because of this  large  difference  in  spectral  resolution  you  cannot  derive  the  layer-to- 

space  transmittances  directly from the  product of the  convolved  layer  transmittances 

since  you  have  lost  Beer’s  law by doing  the  convolution.  Overcoming  this  problem  is 

one of the major  issues  in  the  development of a model for fast, parameterized,  convolved 

layer  transmittances. 
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FIG. 4.2.2 FLOW DIAGRAM FOR DEVELOPMENT OF THE AIRS-RTA 

In the following  sections  we  discuss the major  issues  in  developing the AIRS-RTA, 

which  include: 

(1) forming  a  discrete  grid for integrating  the  radiative  transfer  equation, 
(2) parameterizing  the  layer  transmittances as a  function of the  atmospheric state, 
(3) the  spectroscopy  needed to compute  atmospheric  transmittances, 
(4) the  line-by-line  algorithm  used to generate  the  monochromatic  transmittances 
(5) the  AIRS  spectral  response  functions 

The flowchart  shown  in  Figure  4.2.2  outlines  the  flow of activities needed to develop 

the  AIRS-RTA,  which is discussed  in  the  following  text. 
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4.2.1 AIRS Atmospheric  Layering  Grid 
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FIGURE 4.2.3: AIRS-RTA MODEL PRESSURE LAYER STRUCTURE. (NOTE: LAYER NUMBER 
IS INVERTED IN THIS FIGURE COMPARED TO THE TEXT.) 

The  atmospheric pressure layering grid for the  AIRS-RTA  model  was selected to 

keep radiative transfer errors below  the instrument noise. Grid characteristics are a 

function of  the  spectral region(s) of observation, the instrument resolution,  and 

instrument  noise.  The  speed of the final fast transmittance model  will depend on  the 

number of layers, so excessive layering should be avoided. 

Line-by-line simulations indicate some channels need a top layer with pressures as 

small  as 0.01 mb,  an altitude of - 80 km. The region of primary  importance to AIRS  is 

the troposphere and  lower stratosphere, where layers on the order of 1/3 of the nominal 1 

km vertical resolution of AIRS retrievals are desired. Smoothly  varying layers facilitate 

interpolation and  avoid large changes in layer effective transmittances. The following 

relation defines the  pressure layer boundaries selected for AIRS: 

Pi = (ai + bi + c) 2 
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where  P is the pressure in millibars; i is the layer boundary index and ranges from 1 

to 101 ; and the parameters a, b, and c were determined by solving this equation with the 

following fixed values: P, = 1100 mb, P,, = 300 mb,  and  P,,, = 5 ~ 1 0 - ~  mb. The 101 

pressure layer boundaries in  turn define the 100 AIRS layers. These layers vary 

smoothly in thickness from several tenths of a kilometer near the surface to several 

kilometers at the highest altitudes. Figure 4.2.3 displays a plot of this atmospheric layer 

structure. 

4.2.2 Fast  Transmittance  Modeling 

Over the years, a number of fast transmittance models have been developed for 

various satellite instruments [McMillin and Fleming, 1976; Fleming and McMillin, 1977; 

McMillin et al., 1979, 1995; Scott and Chedin, 1981; Susskind et al., 1983; Erye and 

Woolf, 1988; ChCruy et al., 19951. However, some of these models only have been 

applied to the microwave region where the measured radiances are essentially 

monochromatic and easier to model. AIRS required a major new effort in  the 

development of its RTA,  some of the details of our model in its early stages can be found 

in  Hannon et al. [ 19961. The AIRS-RTA  model has already been adopted by the 

EUMETSAT IASI Science Team (private communication, Marco Matricardi , ECMWF), 

and for GOES applications (private communication, Paul Van Delst, University of 

Wisconsin). 

The  AIRS-RTA  most closely follows Susskind et al. [ 19831  by parameterizing the 

optical depths rather  than transmittances for channels where the influence of water vapor 

is small. Channels sensitive to water vapor are modeled using a variant of the Optical 

Path  TRANsmittance  (OPTRAN) algorithm developed by McMillin et  al. [ 1979, 19951. 

The  AIRS infrared fast model is thus a hybrid of both Susskind's approach and 

OPTRAN. 

The  AIRS-RTA  model actually produces equivalent channel averaged optical depths, 

k's, which are related to the layer transmittances, z Is, by z = exp(-k). The optical depth is 

the product of the absorption coefficient and the optical path. For AIRS, a fast model for 

k is much  more accurate than a model that directly returns layer z 's. k s  are computed for 
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each of the 100 atmospheric layers used for AIRS radiative transfer. The current AIRS- 

RTA  model allows water, ozone, methane, carbon  monoxide, carbon dioxide, the 

temperature,  and  local  scan angle to vary.  All  other gases are treated as  ‘fixed’ gases. 

These gases are  “fixed”  in  the sense that  we  only  need to parameterize their dependence 

on  temperature,  not  amount.  Although the observed  radiances are primarily sensitive to 

temperature  via  the  Planck function, the  temperature dependence of the transmittances is 

also important. 

The following discussion outlines the  development of a parameterization of the 

convolved  layer transmittances as a function of  the atmospheric state. Most of the 

complications of this parameterization arise from  the loss of Beer’s law, which forces us 

to introduce terms in  the transmittance parameterization for a given atmospheric layer 

that  depend  on layers above  the particular layer under consideration. These 

parameterizations, which are functions of the atmospheric profile, are derived from least- 

squares fits to a statistical set of atmospheric profiles  in order to ensure that  we can 

faithfully  produce the appropriate transmittances under all atmospheric conditions. We 

call this statistical set of profiles our “regression profiles”. 

4.2.2.1 Breakout of Gases 

Once the  atmospheric layering grid  and  regression profiles (see later discussion) are 

selected, the  monochromatic layer-to-space transmittance can  be calculated. The gases 

are distributed into sub-groups  that are either fixed or variable. The details of  how the 

transmittance  model simultaneously handles  several  variable gases is somewhat 

complicated  and  beyond  the scope of this document. For simplicity, this discussion is 

restricted to fixed gases (F), water  vapor (W), and  ozone (0). The breakout of the  other 

variable gases is similar. The monochromatic layer-to-space transmittances for the 48 

regression  profiles  are calculated for each pressure layer, grouped into the following three 

sets,  and  convolved  with  the  AIRS SRF, 

F,,J = T ~ , J  (fixed) 

F0,,1 = T,,J (fixed + ozone) 

FOW,,l = T,,l(fixed + ozone + water) 
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Water continuum absorption  is excluded since it varies slowly  with  wavenumber  and 

does not  need to be convolved with  the  AIRS SRF. In addition, separating out  the  water 

continuum improves  our fit of the  local line water transmittance. Later, the  water 

continuum is factored into the  total transmittance as a separate term. 

For  each layer 1, the convolved layer-to-space (m,1) transmittances are ratioed  with 

transmittances  in  the  layer  above, 1 - 1, to form effective layer  transmittances for fixed 

(F), water (W), and  ozone (0) as follows: 

(4.2.6) 

Forming these ratios is the  above manner reduce the errors inherent in  separating  the 

gas  transmittances  after  the convolution with  the instrument spectral  response function. 

The total effective layer transmittance can be recovered as follows, 

(4.2.7) 

The  convolution of a product of terms is in  general  not  the  same  as  the  product of  the 

terms  convolved individually. However, the above formulation guarantees the  product of 

all  the  layer  transmittances  from layer 1 to 00 exactly returns FOW,,,.,  if the layer 

transmittances  are exact. 

The  zeroth  layer transmittance (i.e. when 1 - 1 = 0) is  taken to be exactly 1.0. The 

negative  logarithm of these  layer effective transmittances is taken to get effective layer 

optical depths, 
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which  become  the dependent variables in the fast model regression. 

4.2.2.2 Predictors 

The independent  variables  in the fast model regression, called the predictors, are a 

set of variables relating to the  atmospheric profile. The optimal set of predictors  used to 

parameterize the effective layer optical depth depends upon  the gas, the instrument SRFs, 

the  range of viewing  angles,  the  spectral region, and even the layer thicknesses. In short, 

no one set of predictors is likely to work  well  in every case. Finding the  set of predictors 

which  give  the  best  results is, in  part, a matter of trial and error. However, there are some 

general trends. 

For an instrument such as AIRS  with thousands of channels, it  is difficult to develop 

individual  optimal  predictors for each channel. The AIRS-RTA  uses  seven sets of 

predictors, each corresponding with a subset of channels. These sets of predictors were 

determined by extensive trial  and error testing, as well  as consideration of the  relative 

importance of  the  variable gases in  each channel. Supplemental sets of predictors are 

used for OPTRAN  water,  the  water continuum, and variable CO,. 

The regression  is  prone to numerical instabilities if the values of the predictors vary 

too greatly. Consequently,  we follow the  usual practice of defining the predictors with 

respect to the  values of a reference profile, either by taking a ratio or an offset. There is 

also a danger of numerical instability in  the results of the regression, due to the 

interaction of some of the predictors. Sensitivity of the output to small perturbations in 

the  predictors  is  avoided by systematic testing, but there are practical difficulties in 

detecting small  problems since we are performing on  the order of 1 million regressions. 

As  an example, the predictors for the fixed gases for one of the  seven sets are shown: 

(4.2.9) 

where a is  the  secant of the  local  path angle, TI is the temperature ratio TprofilJTreference, 

and T, is the  pressure  weighted temperature ratio above the layer 
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1 
Tz(l) = cP(i)(P(i)  - P(i - l))T,(i - 1) 

i=2 (4.2.10) 

where P(i) is  the  average layer pressure for layer 1. The predictors for the variable 

gases can involve more  complicated dependencies on  the gas and  the  pressure  weighted 

gas ratios above the layer, similar to the temperature term defined above. Note that terms 

like T, (or W,, etc. for the  variable  gases) make the layer 1 transmittance dependent on  the 

temperature  (or gas amounts) in the layers above 1. 

4.2.2.3 Regressions for Fast Transmittance Parameters 

The accuracy of radiative transfer calculations made  with  the  AIRS-RTA  model  was 

improved significantly by weighting  the variables prior to performing the regression. 

Radiative transfer is insensitive to layers for which  the change in layer-to-space 

transmittance  across the layer is approximately zero. This occurs when either the layer 

effective transmittance  is  approximately unity, or the layer-to-space transmittance is 

approximately  zero. Therefore, the data going into the regression is not  all of equal 

importance to the final accuracy of radiative transfer calculations made  with  the model. 

We found it useful to weight the data in terms of  both its effective layer optical depth  as 

well  as the total optical depth of all  the layers above  the layer under consideration. 

The spectral  dependence of the fitting errors are  shown  in  Figure 4.2.4 and a 

histogram of these errors in Figure 4.2.5. The errors are calculated with respect to the 

regression  profile set, comparing the RMS errors between the brightness temperatures of 

input data and  the  AIRS-RTA  model calculated values. These graphs including errors 

from all  six angles used for regression profiles. They do not include errors associated 

with  the  parameterization of the  reflected  thermal  and  reflected solar radiation. 

During the  development of the AIRS-RTA, the RMS errors were  computed for a 

large independent  set of profiles. The resulting RMS errors were  generally slightly larger 

between  spectral lines, and  slightly smaller on top of lines. Since that  time, the 

transmittance regressions have  been improved significantly, and the latest model needs to 

be  re-tested  against  an  independent  set of profiles. The regression  profiles represent a 
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wide  range of possible conditions, with a number of extreme cases. The RMS errors with 

an independent  set of profiles are not expected to be  much larger than  what  is  shown  in 

graphs presented  here. It is important to recognize, however,  that  the  AIRS  -RTA does 

have a statistical component that comes from the selection of the  regression profiles. 

4.2.2.4  Regression Profiles 
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FIG 4.2.4: RMS FITTING ERRORS OF THE AIRS-RTA MODEL. 

One  other  necessary  pre-processing step is the selection of a set of profiles  for 

calculation of  the layer-to-space transmittances. The transmittances for these profiles 

become  the  regression data for the fast transmittance coefficients. These profiles  should 

span  the  range of atmospheric  variation, but, on  the whole, should  be  weighted towards 

the  more  typical cases. The  range of variation provides the  regression  with data points 

covering the range of possible atmospheric behavior, while  the  weighting of the  mix of 

profiles  towards  more  typical cases produces a transmittance model  that  works best on 

more  statistically  common profiles. 
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The  process of calculating and convolving monochromatic layer-to-space 

transmittances is  generally  computationally intensive, thus imposing a practical limit on 

the  number of profiles one can calculate for  use  in  the regression. As discussed earlier, 

48 regression  profiles  (at 6 viewing angles each) are sufficient to cover most of the 

profile behavior. This number  is a compromise between  the available time and 

computing resources  and  the  need to cover a wide  range of profile behavior in the 

regression. Choosing too few profiles leads to accuracy  problems for profiles outside the 

range of behaviors considered. Choosing more  profiles  than  necessary does not  hurt  the 

fast model,  but does consume extra time  and computer resources. 
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FIG 4.2.5: HISTOGRAM OF THE AIRS-RTA  MODEL FITTING ERRORS FOR ALL CHANNELS. 

Each  profile  should cover the  necessary pressure (altitude) range  with data for 

temperature  as  well  as  absorber  amount for each of the gases allowed to vary. The fixed 

gases  include  all  whose  spatial  and  temporal concentration variations have a negligible 

impact  on  the  observed radiances. As  previously  mentioned,  the variable gases are H,O, 

0,, CO, CH,,  and  CO,. All  other gases are  included  in the ‘fixed gas’ category. CO, is 
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handled  differently  than  the  other  variable gases, and  only two CO, absorber amount 

profiles  are  used: a standard  amount  profile  and a perturbed  amount profile. The standard 

amount CO, profile  is  treated  as a fixed gas. A very simple and accurate 

parameterization is used to model  the difference in transmittance between  the standard 

CO,  profile  transmittances  and  the  perturbed CO, profile transmittances. 

For those satellite viewing angles relevant to the  AIRS instrument (0 to 49 degrees), 

the effects of viewing  angle  can  be approximated fairly well by multiplying  the  nadir 

optical  depth by the  secant of the local path angle. This approximation neglects the  minor 

refractive effect at large angles. Due to the curvature of the Earth, the  local  path angle is 

in  general  not  the  same  as  the satellite viewing angle, but  is  related to it by a fairly simple 

equation. Local  atmospheric  path angles of 0, 32,45, 53, 60, and 63 degrees are used  in 

the  regression  profiles to cover the 0-49 degree satellite view angle range. An additional 

six angles  between 69-84 degrees are used for the shortwave channels where 

transmittances at large angles are need to model  the reflected solar radiance. 

4.2.3 Spectroscopy 

Our  ultimate  goal  is to produce  an  AIRS-RTA  that does not introduce significant 

errors in  AIRS  computed radiances. In the past,  this  has  not  been possible given  the 

state-of-the-art in  atmospheric spectroscopy. However, advances in laboratory 

measurements of line parameters  and  advances  in phenomenological spectral lineshape 

models  make an accurate AIRS-RTA a real possibility. This is especially important for 

water vapor. Radiosonde  humidity errors, coupled with errors due to time and space co- 

location differences between  radiosonde  reports  and  AIRS observations, make tuning of 

the  AIRS H,O radiances  quite suspect. Consequently, the forward model  is of 

fundamental importance for AIRS data products. 

During the  development of the AIRS-RTA  it  has  been clear that uncertainties in the 

CO,  and  water  vapor lineshapes were  easily large enough to impact  AIRS retrievals. 

Consequently, we have  been  actively  making  (or analyzing) new laboratory 

measurements of these gases under conditions appropriate for AIRS.  We  have  recently 

developed a new  lineshape  model for CO,  that  has significantly improved our  ability  to 
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compute AIRS  radiances  in  the  important  CO, sounding channels (see later discussion). 

At present, we are analyzing  new  long-path (0.5 km) data of water  vapor,  taken  at the 

Rutherford  Appleton  Laboratory  (under  AIRS sponsorship), in order to improve the water 

vapor continuum in  the 1250 - 1350 cm-1  region important for sounding of tropospheric 

water  vapor.  We  are also re-examining the water  vapor continuum in  the 10-12 um 

window  with  these  data,  where  we suspect that the continuum is too strong. Work  is also 

continuing on  development of a near-wing  water  vapor lineshape that  has  been  partially 

reported by Tobin  et  al. [ 1996a. 1996bl. 

In  parallel  with  the  laboratory spectroscopy, we have continued to compare the 

spectroscopy  used  in  the  AIRS-RTA  with observed radiances, generally  taken by a high 

resolution interferometer flying on  NASA’s ER-2 (HIS, NAST-I). Comparisons of this 

sort  are  highly  dependent on good  in-situ radiosonde data, which is often difficult to 

obtain. Nevertheless, comparisons between a growing number of these so-called 

validated  radiance data sets indicates that our improved CO, spectroscopy is  reducing  the 

errors between  observed  and computed radiances. We have seen some marginal 

improvements in regions of strong water emission [Strow, 1998a1,  but  these observations 

will  always to difficult because of the  relatively large systematic errors in  the  radiosonde 

humidity  measurements  in  the  mid- to upper-troposphere. 

4.2.3.1 Spectroscopic Line  Parameter  Errors 

Due to the  dominance of either CO, or H,O absorption  in  the  majority of AIRS 

channels, the most  important  spectroscopy errors are associated with errors in the line 

parameters and line shapes of these  two gases. The line parameters most  likely to 

introduce  spectroscopy errors into the fast forward model for AIRS are the line strengths, 

line widths, and  the temperature dependence of the line widths. However, errors in 

spectral lineshapes and continuum absorption  probably are generally  more troublesome 

than line parameter errors. 

Currently, the  HITRAN98  [Rothman et al., 19981 database is used for most 

atmospheric  line  parameters,  supplemented by more  recent  water linewidths measured by 

Toth [private communication]. The  AIRS-RTA  will  be  regularly  updated  with  the latest 
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available line parameters using databases such  as HITRAN2000 and GEISA [Husson et 

al., 19921. Because there are so many  bands  and  molecules  that contribute to the 

observed radiances, the  accuracy of the existing line parameters is difficult to judge in 

detail. Fortunately for AIRS,  most of the important lines of  both CO, and H,O have  been 

measured  in  the laboratory. 

In  general  the CO, line parameters are better known  than for H,O. The line strengths 

for the stronger CO, lines have  an  estimated  accuracy of  -296, while  the H,O line 

strengths may  only  be  good to 5%, or  worse, for weak lines. The estimated uncertainties 

in  the linewidths are  5% for CO, and  5-10% for H,O. The combined effects of these 

errors on  the  AIRS computed radiances are difficult to ascertain, but  we expect them to 

be  on  the order of 0.2 - 0.3K once recent laboratory results are incorporated into our 

radiative transfer models. These errors will also be  highly  wavenumber dependent. 

There may  be  isolated  regions  with larger errors, although  these are slowly disappearing 

as  the  laboratory  spectroscopy  improves. 

4.2.3.2 Molecular Line  Shape Effects 

Errors in  the  spectral lineshapes of  CO, and H,O are much  more problematic than 

line parameter errors. Because of the  large optical depths of CO, and H,O in  the 

atmosphere, their spectral line wings  can  be important, especially for remote  sensing of 

temperature  and  humidity.  For example, AIRS channels with  the sharpest weighting 

functions are located  in  between lines or in the line wings  where knowledge of  the 

spectral line shape is most important. Moreover, accurate measurements of the line wing 

absorption are exceedingly difficult due to problems simulating atmospheric optical 

depths in a laboratory cell, especially for H,O. It is also tedious and expensive to make 

these large optical depth  measurements  at  the  low  temperatures found in  the  upper 

troposphere. 
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FIG. 4.2.6. COMPARISON OF NAST-1 COMPUTED AND OBSERVED BRIGHTNESS TEMPERATURES 
DURING THE WINTEX CAMPAIGN IN THE 4.3 P M  SPECTRAL REGION WHERE MANY 

TEMPERATURE SOUNDING CHANNELS ARE LOCATED 

As discussed earlier, we are actively working to improve both  the  CO,  and  water 

vapor lineshapes for incorporation into the  AIRS-RTA.  The CO, work  is essentially 

finished and  is  illustrated  in  Figures 4.2.6 and 4.2.7, showing  the improvements between 

observed  and  computed  NAST-I  and HIS radiances taken  during several campaigns. 

These improvements are based on a phenomenological model of P R  branch line mixing 

that is presently  not  available in any  other line-by-line code. The difficulty of building 

this more  advanced  lineshape into an existing line-by-line code is one of the reasons why 

we  had to develop  our  own line-by-line code (UMBC-LBL). Because line-by-line (and 

especially PiR branch line mixing) calculations are very slow, we developed a new 

pseudo line-by-line algorithm called the kcompressed Atmospheric  Radiative Transfer 
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Algorithm  (kCARTA) to allow  the  fast  computation of almost monochromatic 

transmittances and (see below). 

Recent  laboratory  work  has  improved our knowledge of the H 2 0  line shape within 

the strong part of the H 2 0  infrared  band  [Tobin et al. 1996a, 1996b], a region  important 

for the  determination of mid- to upper-tropospheric H20. In addition, recent 

measurements  with  the  Atmospheric  Emitted  Radiance Interferometer (AERI) at  the 

Department of Energy’s Atmospheric  Radiation  Measurement  program  Cloud  And 

Radiation  Testbed site in Oklahoma should lead to an  improved H,O continuum in  the 

AIRS  window channels near 10 pm. This work is in progress. 

4.2.4  Line-by-Line  Calculations 

The monochromatic layer-to-space transmittances used to determine the  parameters 

of the  AIRS-RTA  model  are  indirectly generated using our custom line-by-line code 

(UMBC-LBL).  We  will continue to incorporate spectroscopic advances into UMBC-LBL 

and validate these  using  data  acquired  in  the field campaigns discussed in  the  AIRS 

Validation  Plan  and  outlined  briefly  in  Section 8.6 
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FIG. 4.2.7. COMPARISON OF NAST-1 COMPUTED AND OBSERVED BRIGHTNESS 
TEMPERATURES DURING THE WINTEX CAMPAIGN  IN THE 15 F M  SPECTRAL REGION. THE 

CIRCLES DENOTE SPECTRAL REGIONS WHERE THE RADIOSONDE DATA CAN BE USED FOR 
COMPARISON TO OBSERVED RADIANCES, BASICALLY IN-BETWEEN SPECTRAL LINES THAT 

HAVE WEIGHTING FUNCTION PEAKING WELL BELOW THE ER-2 ALTITUDE. 

Currently, 48 profiles are used  in  the regressions for the fast transmittance 

parameters. However, 48 line-by-line calculations for each of  the 100 AIRS pressure 

layers are not  performed  directly  with UMBC-LBL. Instead, UMBC-LBL is  used to 

compute a very  large look-up table of monochromatic layer optical depths for a set of 11 

reference  atmospheric profiles. Such a look-up table is  similar to the  approach of Scott 

and  Chedin [ 19811. Layer optical depths scale linearly  with gas amount since the look-up 

table is  monochromatic.  In addition, the layer optical depths vary quite slowly  and 

smoothly  with  temperature, allowing accurate interpolations in temperature. Note that 

any change in  the  physics  of  the line-by-line code  or line parameter database requires a 

recalculation of the  affected  portion of the look-up table. 
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Each  file  in  the  look-up  table  covers  a 25 cm"  interval  with 10,000 points (0.0025 

cm" spacing) for 100 pressure  layers  (0.009492  to  1085  mb). The pressure  layer 

structure,  described in more  detail in the  following  sub-section,  was  chosen  to  produce 

errors < 0.2 K in  observed  brightness  temperatures for AIRS.  For  each  infrared  active 

gas  and 25 cm" region from 605 cm"  to 2830 cm", 11 tables  are  computed  differing  only 

by the  temperature  profile. The 11 profiles  are  the U.S. Standard  profile,  and 10 profiles 

offset from it in +10K increments.  On  average, 7 gases  must  be  included  per 25 cm" 

region.  The  continua due to  gases  such  as N, and 0, are also  included  in  these  tables. 

Optical  depths  are  computed  using  a 0.0005 cm" grid  and  then  averaged  to  the  database 

grid  spacing of 0.0025 cm".  Consequently,  the  highest  altitude  optical  depths  are  not 

truly  monochromatic,  but  exhibit  good  integrated  optical  depths. The relatively  large 

width of the  AIRS  Spectral  Response  Function (SRF) results  in  negligible errors due to 

this  averaging. 

This  large  look-up  table  has  been  compressed  and  incorporated into our  k- 

Compressed  Radiative  Transfer  Algorithm  (kCARTA)  pseudo  line-by-line code [Strow et 

al.  1998bl. The approximately 50 times  compression  achieved  in  kCARTA is lossy,  but 

the  accuracy of the  transmittances  remains  very  high.  kCARTA  bridges  the gap between 

slow  but  accurate  line-by-line codes, and  fast  but  special  purpose  fast  transmittance 

codes.  kCARTA  is  used  to  calculate  the 48 profile  transmittances  we  use  as  regression 

data  for  the  AIRS  fast  transmittance  model. The computation  time for these 

transmittances  is  not  a  significant  fraction  of  the  time  involved  in  creation of a  new  fast 

model.  However,  the  transmittance  data files are  very  large,  and  the  convolution  of  these 

monochromatic  transmittances  with  the  AIRS SRFs is a  major  time  consuming  process. 

kCARTA  will  also  serve  as  the  AIRS  Reference  line-by-line  algorithm  for  validation 

of the  AIRS-RTA  and  general  purpose  analysis  of  AIRS  accuracy.  For  example, 

kCARTA  will  be  used for the  initial  analysis of AIRS  observed  radiances  before  the 

instrument is thermally  stable. 
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4.2.5 Spectral  Response  Function  Measurements  and  Modeling 

Inaccuracies  in  the  AIRS  spectral response function directly impact the  accuracy of 

the  AIRS-RTA,  and  consequently  the  accuracy of the  AIRS  retrieved  products. The 

AIRS SRFs are  not  Level 1 products, so it is appropriate to discuss the determination of 

the SRF functions in this document. Complete knowledge of the  AIRS SRFs derived 

solely from ground calibration is not possible for two reasons; (1) small shifts in  the 

alignment of the  AIRS spectrometer/focal plane during launch  could shift the centroids of 

the  AIRS SRFs, and (2) the  spectral location of fringes produced  by  the  AIRS entrance 

aperture filters may  be  dependent  on  the thermal environment of AIRS  in orbit. We 

expect both  of  these effects to be  relatively small, but  our requirements on SRF 

knowledge  are quite stringent. 

For example, we  need to know  the SRF centroids and  widths to 1% or better. 

Following vibration  testing of the  AIRS instrument, the SRF centroids appeared to have 

shifted by  more  than 1 %. AIRS  may  need to operate at two different temperatures during 

its design lifetime. Since the  channel centroids and the fringe positions  shift at different 

rates with  temperature,  new SRFs will  be required for each  operating temperature of 

AIRS.  (AIRS  is expected to operate at its initial in-orbit temperature for at least 3 years.) 

It is likely  that  the effects of the channel spectra on  the SRFs measured during 

ground  calibration  can  be  sufficiently characterized. This will  allow  us to determine the 

AIRS SRFs as if the  channeling  did  not exist. We  have convincing evidence that these 

“pure”  SRFs  vary  in a very  smooth fashion across each array  and  that the SRF shape can 

be  adequately characterized using  an empirical model function. In addition, using  ground 

calibration data we can  fully characterize the  variation  in the SRF centroids (and  widths) 

with  temperature. 

Once  in orbit, a sub-set of channel centroids can  be  accurately  measured  using 

upwelling  radiances. This absolute frequency calibration will  then  be  transferred to all 

other channels using  the  grating  model  derived from ground calibration data. The 

positions of the fringes relative to the  actual channel centroids can also be determined in- 

orbit as follows. The fringes, which  have a contrast of approximately 8%, affect the 
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radiometric  gain of the  AIRS  detectors.  However,  the fringe positions  are  also  dependent 

on  temperature, so by varying  the  temperature of AIRS  (during  initial  deployment)  we 

can  measure  how  the  radiometric  gain  changes  with  temperature  and  wavenumber.  From 

this  information  we  reconstruct  the  fringe  positions for each  channel. This process  also 

depends, to some  extent,  on  the  filter  transmittance. Since the  transmittances of the  flight 

instrument  filters  were  not  measured  at  high  spectral  resolution,  we  must  rely  on 

transmittance  measurements of filters  manufactured at the  same time as  the  flight  filters. 

Clearly,  the  determination of the  AIRS SRFs involves a complicated  series of events, 

some of which  cannot  be  performed  until  after  launch. A detailed  analysis of the SRF 

uncertainties  is  premature  since  ground  calibration  only  ceased  in  November 1999. The 

software  to  produce  the  AIRS-RTA  has  been  developed  to  allow  the  relatively  quick 

production of up-dated  fast  transmittance  parameters  once  the SRFs are known  in  order 

to  minimize  delays  in the start-up of operational  retrievals. 

4.2.6 AIRS-RTA  Error  Analysis 

The following  table  contains  preliminary  estimates of the errors in  the  AIRS-RTA in 

units of brightness  temperature.  They  are  separated  into  radiative  transfer/spectroscopy 

errors  and SRF knowledge  errors.  In  many cases these errors will  be  correlated, 

sometimes of opposite  sign.  Consequently it is  very  difficult  to  properly  combine  the 

errors  in  Table 4.2.1 into a single  AIRS-RTA error budget.  In  addition,  many of these 

errors  are  highly  channel  dependent. 

The spectacular  redundancy  in  the  AIRS  channels  will  provide  many  opportunities  to 

separate  the  various  contributions  to  the  total  RTA error budget.  For  example,  many 

spectroscopy  errors  will  be  highly  correlated.  Moreover,  these  errors  will  correlate  very 

poorly  with  errors  due  to  inaccurate  SRFs.  Although some SRF errors  will  be  difficult  to 

completely  characterize,  we  will  know  which  channels  are  susceptible  to  these  errors, 

which  will  help us isolate  them from other  errors.  Fast  model  parameterization  errors 

will  be  continuously  checked  using  kCARTA  and  in-orbit  data  will  most  likely  help 

highlight  any  problems  with our choice of regression  profiles. 
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Radiative  Errors Comments  Brightness 
Temperature 

Error (K) 

Fast  Transmittance  Model Very channel  dependent < 0.02K - 

Needs  improved  parameterization 0.15K Reflected  Thermal 

Larger  errors  where H20 continuum 0.2-0.4K Spectroscopy 
0.2K 

dominates 

Solar 

0.05K Polychromatic 
Most  channel  have  much  lower  errors  Max 0.05K Layering 
Errors  coupled with retrieval  algorithm < 0.1 K 

Approximation 
Aerosols Shortwave  only ? 

SRF Errors 
Centroids 

VERY channel  dependent,  assumes 0 - 0.3K Channeling 
Analysis  not  complete 0.2K Widths 
Somewhat  channel  dependent 0.2K 

Grating  Model 0.1 K? Analysis  incomplete  on  in-orbit 

Wings 0.1 K Analysis  incomplete,  channel 

0.1  cm-I  knowledge of fringe phase 

absolute  frequency  calibration 

dependent 

TABLE 4.2.1 AIRS-RTA  ERROR  ESTIMATES 
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5 MATHEMATICAL  DESCRIPTION OF THE  CORE  RETRIEVAL 
ALGORITHM 

The  AIRS Team Core  Algorithm  has two major  product goals: 

a rapid  determination of atmospheric state using  regression  methods 
a more accurate physically  based  retrieval of all geophysical parameters 

These are maintained to provide  the flexibility for operational data processing in a 

timely  and  computationally efficient manner  in support of numerical  weather prediction, 

as  well  as to provide  high  quality data products for Earth Science Enterprise research. 

In this section  both  the underlying physics and  the algorithms used to retrieve 

geophysical  parameters  will  be described. Many different types of retrieval 

methodologies  can  be  applied to this problem  with advantages for each type. In  general 

we  can classify the approaches into two: 1) pre-computed Empirical Orthogonal Function 

(EOF) or regression  methods  and 2) physically-based techniques which  match  measured 

and  calculated  radiances  and iterate until  the  match is within  the expected signal-to-noise. 

Approach 1 is the fastest methodology  because  all the radiative transfer calculations are 

done off-line. The first approach  is  used to produce a rapid  and accurate estimate of the 

geophysical  parameters  which can be  refined  by a rapid  physical retrieval step. To 

produce  the  final  product, a more sophisticated physical retrieval, which includes the use 

of a scene  dependent noise covariance matrix,  allows for further refinement of the 

products  with error estimates on a case-by-case basis. 

There are also two approaches to the  infrared cloud-clearing problem: 1) account for 

the effects of clouds in  the  observed  radiances  and 2) eliminate the effects of clouds from 

the  observed radiances. The method  chosen for the  AIRS Team algorithm is  approach 2 

which  has  had a long  and  successful  application to current and previous generations of 

temperature  sounder  measurements.  (Approach 1 will  be examined as a research  product 

and  is  not  described  in this document.) 

The cloud-clearing methodology  assumes  very little about  the radiative properties of 

the clouds. The only  assumption  is  that for a given channel, a given cloud formation 

behaves  the  same  in  all fields of view. To the  extent  that a cloud formation behaves 

49 



AIRS  Level 2 Algorithm  Theoretical  Basis  Document  Version 2.1 

differently  in  different fields of view,  it  is  in  reality  more  than a single cloud formation. 

The cloud clearing methodology  can  handle  many cloud formations in principle, and  has 

been tested for two  cloud formations. Should the  assumption of cloud homogeneity 

(between fields of view) for a given  number of cloud formations break down, the scene 

will appear to contain multiple cloud formations and  satisfactory solution will  not  be 

found and the  profile  will  be rejected. 

The final product  algorithm does not attempt to solve for cloud properties 

simultaneously  with  the  temperature  and  moisture profile because errors in the cloud 

properties (radiative properties of clouds can  behave  in a very complex way) will 

propagate into errors in  the  other  retrieved quantities. We first obtain clear column 

radiances  in a way that  does  not  require  knowledge  of  the  detailed radiative properties of 

the clouds, then  obtain solutions for other geophysical parameters, and  then  retrieve  cloud 

properties. 

Tuning 
5.5 .- 

Microwave- 

Retrieval 5.1 
only 

1 
First Cloud 

Clearing P a s s  
5.2 

I 

I 5.: I First Product 

Second Cloud 
Clearing P a s s  

Final Product 

I 

Level 2 

Products 

FIGURE 5.1.1 SIMPLIFIED ALGORITHM FLOW CHART 
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Overview 

The approach the AIRS  team has taken to meet  the  very stringent temperature 

accuracy constraint of 1K RMS Tropospheric error in 1 km increments is to provide 

multiple  retrieval strategies, designated as products. A simplified chart is  presented  in 

figure 5.1 that describes the  basic  flow of the  AIRS Team Algorithm design. 

The  main objective of the  microwave initial guess algorithm (section 5.1) is to 

characterize the atmospheric  column  in terms of precipitation and cloud liquid water 

which are used  in  the  cloud-clearing process throughout the core algorithm retrieval. 

The clear sky  or cloud-cleared radiance spectrum is derived from a composite cloud- 

clearing algorithm before retrievals in either the first or final product are attempted 

The first product  algorithm (section 5.3) has  two objectives: (1) delivers the initial 

guess  using  in  the  final  product algorithm and ( 2 )  is computationally expedient. 

Optionally,  this  result  can  be  derived sufficiently quickly to be  used  in  NOAA 

operational  weather forecasting. 

The final product  algorithm (section 5.4) delivers all the  AIRS/AMSU/HSB Core 

Products  as  defined  in this document. The final product algorithm is a totally  new state of 

the  art algorithm developed for a high signal-to-noise instrument with  many channels. 

The algorithm takes  great  care to describe all sources of channel noise (defined  as  the 

error in  the difference between observed and computed brightness temperatures), 

especially errors due to cloud clearing. The algorithm then finds solutions which  best 

match  these  radiances,  given  the  noise covariance matrix, with  no explicit consideration 

given to the estimated accuracy of the first guess, or the extent of deviation of the 

solution for the first guess.  The algorithm has  been  shown to have  only a very  weak  first 

guess dependence, and  does  not require considerations or coefficients which depend on 

location  or  season.  In  addition,  the algorithm produces error estimates for all products, 

including clear column radiances, on a profile  by profile basis. The final  product 

algorithm is  not  dependent on the  NOAA product, but can use either the  microwave 

product,  the  NOAA  product, or the  NOAA  regression guess, as its first guess. The final 

retrieval  is  only  weakly  dependent  on  the first guess used. 
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During  the  simulation  testing  (described in Section 8.4) and  during  the first phase of 

instrument  checkout,  the  algorithm  will  be  streamlined into its most  robust and efficient 

form. 
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5.1 Microwave  Initial Guess Algorithms 

5.1.1  Precipitation  Flags,  Rate  Retrieval,  and AMSU Corrections 

The precipitation algorithm produces (1) 2-bit flags for AMSU Channels 4,5,6,  and 

7, (2) estimates of corrections which should be  applied to their brightness temperatures to 

compensate for precipitation, if present, (3) a precipitation-rate retrieval (mm/hr) which is 

currently  valid  primarily  in mid-latitude regions where  the algorithm was  tuned  with 

NEXRAD data, and  (4) a flag indicating the quality of the precipitation retrieval. Inputs 

to the algorithm are fields of  AMSU data for channels 1,2,4-12, and  the data for all four 

HSB channels. Initially  only the data at 183 2 7 and 183 A 1 GHz are  actually  being 

used. Figure 5.1.1  is a block diagram of the algorithm. 

5.1.1.1 Precipitation Flags 

The objective of the  2-bit flags for AMSU channels 4-7 is to alert users of this data 

to the  possibility  that retrievals based  on these microwave channels might  be impacted by 

precipitation. The four possible flag states are: 

00 No precipitation perturbations detected 
01 Small perturbations present  (nominally less than 2K), which are approximately 

10 AMSU  brightness perturbations for this channel  may  exceed 2K, so perturbation 

11  It  is  unknown  whether perturbations due to precipitation are  present (e.g., altitude 2 2 

correctable 

corrections are less reliable 

km 

Perturbation corrections are estimated for AMSU channels 4,5,6,  and 7 for flag 

states 01, 10, and 1 1 .  In addition, for each AMSU  beam  position a precipitation-rate 

estimate (mm/hr) is  provided  when flag states 00,Ol or 10 exist for AMSU channel 4 

(52.8 GHz). A quality flag for precipitation is also provided: 

00 = no precipitation 
01 = expected rms error relative to a NEXRAD equivalent observation I 0.5 mm/hr 
10 = rms error 2 1.5 dB 
11 = else. 
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FIGURE 5.1.2 AMSU/HSB PRECIPITATION ALGORITHM 
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Users of  AMSU data for temperature profile retrievals should  use brightness 

temperatures flagged with 10 or 11  with caution, even if the suggested perturbation 

corrections are employed. 

Generating precipitation flags from AMSU data involves nine major steps: 

Flag  HSB cells for which  precipitation seems highly likely; i.e. flag cells for which 
183 f 7 GHz  is colder than  260K.  AMSU spots over  ocean for which a simple liquid- 
water estimate exceeds a threshold are also flagged. 
Dilate by one  HSB cell width  those  regions flagged by 183 7 GHz or 23/3 1 GHz. 
Each  HSB flag is  assigned to the  nearest  AMSU cell. 
Effects of  scan angle and surface variations are removed from AMSU channels 4-7 
by a neural net estimating equivalent nadir brightness temperatures over land. For 
flagged  regions  touching  the  edge of  the swath, linearly interpolate between  the  two 
non-flagged swath-edge AMSU corrected brightness temperatures bordering the 
flagged  regions to estimate values for those 50-km pixels on  the edge of the swath. 
Perform  Laplacian interpolation between corrected brightness temperatures bordering 
the dilated flagged regions  in  AMSU coordinates for AMSU channels 4, 5, 6, and 7. 
For  AMSU Channels 4-7 the interpolated brightness temperatures are subtracted from 
the corrected observed brightness temperatures to yield estimated perturbations due to 
precipitation. Positive perturbations are  set to zero. 
Precipitation flag 00 is  assigned to all  50-km spots for those  AMSU. Channels 4-7 
for  which  neither  the 183 f 7 GHz flag nor  the 23/3 1-GHz flag were set, or for which 
the  deduced perturbations for the associated channel  were less than 0.5K; the 
precipitation  quality flag is also set  to 00. 
The flag 01 is  assigned to all  AMSU spots for those Channels 4-7 for which the 
perturbation  on  that channel lies between 0.5 and  2K. 
The flag 10 is  assigned to all  AMSU spots for those Channels 4-7 for which the 
perturbation exceeds 2K. 
The flag 11  is  assigned  to  all  AMSU spots for which a peak altitude in  that area 
exceeds 2 km,  or for which a precipitation determination could  not  be  made. 

Although  the 183 & 7 GHz channel is  generally  not sensitive to surface variations, 

mountain  peaks  and  cold  dry polar regions  can produce false indications of precipitation. 

The  183 f 7 GHz flag is also less reliable  in  humid  tropical regions where  it cannot 

penetrate to observe low-altitude precipitation. Over ocean these precipitating regions 

can  be flagged instead by using liquid water retrievals based  on AMSU Channels 1 and 2 

at  23.8  and 3 1.4 GHz, respectively; a retrieval  method for this is being derived and  will 

be  incorporated in the algorithm shortly. The 150-GHz  channel  peaks  at still lower 

altitudes, so that  in  more  humid  mid-latitudes  and tropical regions  it could substitute or 

supplement  the  183 & 7 GHz channel. 
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It should be  noted  that  52.8-GHz  radiances  can suffer warm perturbations over ocean 

due to low altitude absorption by clouds or precipitation. Such warm perturbations can 

be flagged and corrected as are the cold perturbations, but  warm perturbations have not 

yet  been incorporated in  the algorithm. Again, the 23.W 3 1.4 GHz combination will 

validate the locations of such excess absorption  and perturbations. 

5.1.1.2 AMSU Channel 4-7 Perturbations 

These perturbations are  the outputs computed in Step 5 of the flag generation 

procedure  described above. 

5.1.1.3 Precipitation Rate Retrievals 

The  precipitation rate is estimated using a neural network operating  on cold 

perturbations in channels 4-7, and  the  blurred and aligned  raw brightness temperatures of 

the four HSB channels (initially only  the 183 & 1 and 183 & 7 GHz channels); the cosine 

of the  scan  angle  is also incorporated. Staelin and  Chen  (1999) found excellent 

agreement  between  these  precipitation rate retrievals and comparable retrievals using 

NEXRAD data. Agreement for four passes over two frontal systems and  two  hurricanes 

yielded  agreement  between  50-km  AMSU  and  NEXRAD precipitation rates of 1.4 dB 

rms for those  rates  above 4 mm/hrr. 

5.1.2 Profile  Retrieval  Algorithm 

The microwave  initial guess profile retrieval algorithm derives temperature, water 

vapor  and  non-precipitating cloud liquid water  profiles from AMSU/HSB brightness 

temperatures.  It is intended to provide  the starting point for the  AIRS cloud-clearing and 

retrieval. This is  an  iterative algorithm in  which  the  profile increments are obtained by 

the minimum-variance  method,  using  weighting functions computed for the current 

temperature  and  moisture  profiles  with  the  rapid transmittance algorithm described in 

Section 4.1. A block  diagram is shown  in Figure 5.1.2. 
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FIGURE 5.1.3 AMSU/HSB INITIAL-GUESS PROFILE RETREVAL 
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The retrieved  profiles  result from a process of iteration in  which the minimum of a 

quadratic form 

(X - X o )  T sx -1 (R - Xo) + [Gobs - O(R)] Serr[Oobs -1 - G(X)] 
(5.1.1) 

is approached asymptotically. In  the above, X is  the estimate of a vector of 

parameters defining the state of the  atmosphere  and the surface, fi, is its a priori value 

and Sx is its covariance matrix, Gobs is a vector containing the measured brightness 

temperatures, S,, is  their error covariance matrix, and e(%) is a brightness temperature 

vector  computed  from % by the radiative transfer model  (see Section 4.1). 

The input  vector of measured brightness temperatures is  accompanied by  an input 

validity  vector  whose elements are either one or zero. This provides a way  of handling 

missing or bad data when real  measurements eventually are  processed.  Prior to the 

retrieval, the rain  rate  in  the field of  view  will  be estimated, and if the  rain exceeds some 

threshold, the  lower tropospheric channels will either be corrected for perturbation by 

rain,  or excluded from  use in the retrieval by setting their  validity flags to zero. 

Planck’s  equation for radiant  intensity  is a nonlinear  function of temperature. For 

microwave frequencies, however,  the  physical temperatures encountered in the earth’s 

atmosphere lie at  the high-temperature asymptote of this function. Hence, as discussed 

by Janssen  (1993), brightness temperature  can  be  used  as a surrogate for radiance in the 

equation of radiative  transfer  with  an  accuracy of a few hundredths of a kelvin. The only 

exception to this statement occurs with  the cosmic background,  which  must  be  assigned 

an effective brightness temperature at  frequency v of 

hv  ehv/kTCB + 1 
‘CB = x e hv/ kTcB -1 

(5.1.2) 

instead of its actual  temperature TCB = 273 K,  in order to linearize Planck’s function. 

The equation of radiative transfer is  written in the  form 
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(5.1.3) 

where 0 ~ 0 ~  is  the brightness temperature emitted from the top of  the atmosphere, 'I: 

is the  one-way transmittance of the atmosphere, @direct is  the component of brightness 

temperature emitted from the atmosphere on a direct path  to space, 0, is  the surface 

brightness temperature, @sky is the  sky brightness temperature (including the attenuated 

cosmic contribution) as  it  would  be observed from  the surface, and T, is the  physical 

surface temperature. Based  on experience with  NOAA-15 data, @,ky is currently 

computed for a path  length (or opacity) equal to 1.15 times the direct path (1.10 for 

AMSU channels 4-14). This empirical adjustment accounts approximately for the effect 

of  ocean surface non-specularity, and is consistent with  the calculations of Guissard and 

Sobieski (1994).  For  higher-emissivity surfaces, the  adjustment  has a negligible effect. 

5.1.2.1 Surface Brightness Model 

The surface brightness temperature spectrum 0, is modeled by a four-parameter 

curve (Grody, 1988),  added to an a priori surface brightness: 

(5.1.4) 

where R, and  R( v) are defined as 

R, = (v,/3 1.4  GHz),,  (5.1.5) 

R(V) = (~ /31 .4  GHZ),. (5.1.6) 

To, T,, V, and s are parameters defining  the curve, and Os, is a preliminary 

estimate of surface brightness temperature. 

The surface classification rules are from Grody et al. (1999), and  make  use of 

discriminant functions which are linear combinations of  AMSU channels 1, 2,3, and 15. 

If sea ice is indicated by the classification algorithm, then its concentration fraction is 
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estimated from a linear  operation  on channels 1 ,  2, and 3. A priori emissivities for the  ice 

and  snow  types  have  been estimated from NOAA-15 data; further work on these  is 

planned.  For land, Os, = 0.95 T, at  all frequencies, and for seawater it is calculated by a 

second-order  polynomial function of temperature  with coefficients fitted to the emissivity 

of a flat surface viewed in the  polarization of  the AMSU and HSB radiometers. A 

separate set of these coefficients was  pre-computed for each incidence angle and 

frequency. The  model of Guillou et al. (1998) was  used for seawater dielectric constant 

at  23.8  and 31.4 GHz,  and  the  model of Lamkaouchi et al. (1997) at  higher frequencies. 
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FIGURE 5.1.4 SURFACE CLASSIFICATION ALGORITHM 

I 

Thus the surface model takes a baseline Os, and adds or subtracts a smooth function 

of frequency, to correct for surface roughness, for errors in  the dielectric constant model, 

for a mis-classification of the  surface, etc. For example, it was found that (4) could 
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approximate a blackbody surface (0, = T,) to within 0.5% at  all AMSU and HSB 

frequencies, even  when Oso(v) was  computed for seawater, if s = 1.2 and 

R,, To, and T, were adjusted to appropriate values for a given temperature. The 

discussion  in  Grody (1988) suggests that a function such as (4) is capable of 

approximating  the emissivity of a wide  variety of surfaces. 

The  retrieval  algorithm fixes s at  the  value 1.2 and treats Ro, To, and T, as 

uncorrelated free parameters for which  it solves, as described below. Mean values are  set 

to 

- 
R, = 3.5 

To  = o  
T, = O  

and  variances  are set to 

SR, = 2.25 

ST, = 100 (Kelvin)2 

ST- = 100 (Kelvin)2 

(5.1.7) 

(5.1 .S) 

5.1.2.2 Atmospheric Moisture and Condensation Model 

Measurements of brightness temperature  at  the HSB frequencies are a result of the 

vertical  profile of atmospheric  opacity  relative to temperature  and hence do not by 

themselves distinguish, at any  given altitude, between opacity due to water  vapor  and 

opacity due to liquid water. However, the physics of water vapor condensation add  some 

a priori information or constraints. Cloud coverage is parameterized as  in the stratiform 

condensation  model of Sundqvist et al. (1989), where a relative humidity  threshold 

determines  the onset of condensation. If the  observing instrument had infinitesimal 

horizontal  resolution,  an appropriate threshold  would  be 100% relative humidity. 

Although  the  water  vapor  profile is saturated within  the  cloudy part of the field, it is 

assumed  that  the  condensation process is  not  spatially resolved, hence the  threshold  is 

less  than 100%. Currently, the  threshold isHcth = 85% 
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The H profile  stored by the algorithm serves to define  both  the vapor and cloud 

liquid  water  density profiles, as illustrated in Figure 5.1.4. 

1.4 

1 .2  

1.0 

P"/ PS 

P,/CL f's 

or . 8  

.6  

. 4  

. 2  

I I I I I 

H ,  percent 

FIGURE 5.1.5 WATER VAPOR ( p,) AND CLOUD LIQUID ( pL) DENSITIES AS FUNCTIONS OF H 

The average vapor  density  in  the field of  view  is 

Pv = 

and  the  liquid  water  density  averaged over the field of view is assumed to be  given 

by 

In the  above, ps is  the saturation value of vapor density, 

b =  - Hcth 

2(100- Hcth), 
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and CL is a preset constant, currently 0.02. Note  that  when H I Hcth, H is equal to 

relative  humidity,  but H can take values > 100%  in  cloudy  regions. 

The saturation  vapor  density  is computed from the temperature profile. Saturation 

vapor  density  is calculated with  respect to liquid water  (by extrapolation) even when the 

temperature  is  below 273 K, because ice clouds are not  considered  within  the context of 

this algorithm. (Absorption from ice  is  much less than  from liquid water, and scattering 

is  not  included  in  the  radiative transfer formulation.) This model therefore allows 

supercooled liquid water  and  water  vapor greater than  the  saturation value over ice. 

5.1.2.3 Estimation of Surface Brightness  and  Atmospheric Moisture 

This part of the  algorithm is based  on retrieval methods  described by Wilheit (1990), 

Kuo et al. (1994), and  Wilheit  and  Hutchison  (1997).  It  uses  the four channels of  HSB 

and channels 1,2, 3 and 15 of AMSU. The HSB  measurements are weighted averages 

over 3x3 spatial  arrays  which  approximate  the  AMSU field of view. The H profile and 

the three surface brightness parameters R,, To, and T, can  be concatenated into a vector 

y .  For small departures of 9 from an existing estimate sieestn-l, measured brightness 

temperature @ob, is  assumed to be  related to the true profile by 
- 

Gobs = 0 + WY[Y - si,,, n-1 ] + e  
(5.1.12) 

where 0 is a brightness temperature vector  computed from the current values of 

temperature,  moisture,  and surface brightness, (Wy).. = d@i/dY, and e represents 

unknown  measurement errors. It follows from (4) and  the  chain rule for differentiation 

that  the  matrix elements of Wy corresponding to the surface parameters are equal to 

1J 

d@/d R, = (d@/d@,) R(v) (To - T,) (R, + R(v))-~ (5.1.13a) 

d@/dT, = (d@/d@,) R, (R, + R(v))" 

d@/dTm = (d@/d@,) R(v) (R, + R(v))" 

where,  from (5.1.3), 

(5.1.13b) 

(5.1.13~) 
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ao/ao, = .t( 1 - osky /T,) 

The elements of Wy corresponding to H values are 

(5.1.14) 

(5.1.15) 

in  which G = d @ / k  where K represents the opacity of the layer, and y = dK/apL . 

G is equal to the  integral  over  an  atmospheric  layer of the function G(h) for which  an 

expression  is  given by Schaerer and  Wilheit (1979). The rapid transmittance algorithm 

computes  the coefficient y in  the small-droplet (Rayleigh) approximation. Hence, it  is 

intended to be  applied  only to non-precipitating cloud situations. A quadratic model  is 

used  to compute the  opacity of water  vapor: 

K = Plpv + P2pv + other  contributions; 2 

hence 

a K  
- = P1+2P2Pv + 
a P v  

where 

P1 = P( Pvest 7 Test) - P2Pv, ’ 

(5.1.16) 

(5.1.17) 

(5.1.18) 

P2 = dP/dPv  (5.1.19) 

The coefficients p and dp/dpv are computed by  the  rapid transmittance algorithm 

using  the temperature profile  retrieval  and  the  initial moisture profile. As a consequence 

of (5.1.9-1 l), apdH and apgH depend  on H as follows: 
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(5.1.21) 

The estimate of is obtained by Newtonian  iteration (see Rodgers, 1976), except that 
Eyre’s (1989) method of damping is used to avoid  large relative humidity increments, 
because of the  nonlinearity of the  problem: 

(5.1.22) 

in  which Test, contains the a priori mean  parameter values, Sy is the a priori 

covariance matrix of P , superscript T indicates transpose, x y  is  the solution vector to 

where S, is  the (assumed diagonal) covariance matrix 

- Oi) I 10 K for all channels 

0.1 otherwise 

of e, and 

(5.1.23) 

1 

(5.1.24) 

Here 6 is a scalar rather  than a matrix as in Eyre’s paper. The parts of Test, and 

Sy corresponding to relative humidity  were calculated from the  TIGR profile ensemble 

(Chedin et al, 1985) while  the surface parts are given  by equations (5.1.7-8). For the 

moisture channels, the  measurement error covariance S, is the  sum  of contributions due 

to instrument  noise  plus a diagonal error of (1.5 which approximately represents 

errors in 0 resulting from errors in the temperature  profile retrieval. It is important to 

note  that  because convergence is determined from  the brightness temperature residuals, 

which in turn  are computed using  the  vapor  and  liquid  column densities, the role of H in 

this  algorithm is only to introduce the a priori statistics and constraints. 

The  estimated H profile  is limited by 1 percent from below  and from above by a value 

which converts to 1 g/m3 liquid  water density. This latter value is intended as an 

approximate  upper  limit for non-precipitating cloud densities, and  hence  it  will  tend to 

leave large brightness  temperature residuals in situations of precipitation, and especially 

when  scattering  is occurring (if  these are not  excluded by use of the precipitation flag). 

After  update of  by (5.1.22-23), the water  vapor  and liquid water profiles are  computed 
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from (5.1.9-1 l), and surface brightness is computed for both  window  and sounding 

frequencies from (5.1.4), using  the  new estimate. 

5.1.2.4 Estimation of the Temperature Profile 

The atmospheric  temperature  vector is augmented by T, , which is considered to be 

distinct from the air temperature near  the surface. The measured 0 ' s  used in the 

temperature  profile  retrieval are channels 4-14 of AMSU. Given  an existing estimate 

Testn-l , the  new estimated profile is to be determined from a vector Oobs of observed 

brightness temperatures, which for small difference profiles T - Test is related to the 

true profile by 

- 

n-1 

O ~ ~ , = O + W T  [T-T,,, n-1 ] + e  (5.1.25) 

in  which 0 is the brightness temperature vector  that  would  theoretically be emitted 

from the  atmospheric profile described by Teest The sensitivities of the  measured 0's  

to the elements of the temperature profile vector constitute the observation matrix WT. 

The elements of this matrix corresponding to the  atmospheric part of the  temperature 

vector are given  by 

n-1 * 

dO/dT = K + G d ~ / d T  

where K is  equal to the temperature weighting function 

Wilheit  (1979)  integrated  over the given atmospheric layer, 

(5.1.26) 

as  defined  by Schaerer and 

G = de/dK, and d ~ / d T  is 

computed by  the  rapid  transmittance algorithm. The second term  on the right side of (26) 

is a small  correction to the temperature weighting function. 

The elements of WT corresponding to T, are obtained by partial differentiation of 

Eq. (3): 

(5.1.27) 
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The dependence  on T, is nonlinear here  because 0, is considered to be a known 

input from the  moisture algorithm. If the  validity of a channel is zero, then  the  row of 

WT corresponding to that channel is set to zeros. The dimensions of the  matrix  remain 

the same. 

The covariance of the temperature vector  was computed from  the  TIGR ensemble 

(Chedin et al., 1985). The difference between T, and the air  temperature  near the surface 

(T1013) is  assumed  to  have zero mean  and standard deviation of 4 K. Thus, T, has a 

larger variance, by 16 K2, than T1013,  but its covariances with  other levels are equal to 

those of  T1013. 

Initially, the  temperature  profile, including surface temperature, is  set to a 

climatological profile Test, which depends on latitude and season. The  new, minimum- 

variance estimate ofT is obtained by Newtonian  iteration (Rodgers, 1976, eq. 101) 

(5.1.28) 

where ST is  the  temperature covariance matrix, and X, is  the  solution  vector to 

(5.1.29) 

The error covariance  matrix S, includes the effects of surface brightness uncertainty 

and  instrument  noise. 

5.1.2.5 Iteration  Procedure  and  Convergence  Tests 

After  the  temperature  profile is updated  using  (28)  and (29), the  algorithm returns to 

the  moisture  and surface-brightness section for another iteration of (22)  and (23), using 

weighting functions computed for the  updated temperature and  moisture profiles. 

Convergence  is  tested  separately for the temperature channels and for the 

moisture/surface channels; iteration of either part of the algorithm is suspended  when  one 
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of the following conditions is  met : (1)  the computed brightness temperature vector 6 
meets  the closure criterion 

(5.1.30) 
i=l 

where ATi is  the instrument noise  on channel i and NB is  the  number of valid 

elements in Gobs; or  (2)  when successive computations of the left side of (30) change by 

less  than 1% of the  right side, for the  temperature channels, or 2% for the 

moisture/surface channels; or (3) when  the  number of iterations exceeds a preset limit, 

currently 12 for the  temperature channels and 16 for the moisture/surface channels. 

Typically, iteration of the  temperature  profile ceases after one  or  two iterations, but  the 

moisture  profile  often  requires  six  or  more iterations. 

If the  mean  square  of brightness temperature residuals for the HSB channels is 

greater  than a preset  threshold  value,  then an ice scattering flag is  set at all altitudes for 

which clouds are present and the temperature estimate is below 273 K. The scattering 

threshold is currently  set  at 64 (i.e., 8K rms per channel). 
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5.2 Cloud Clearing 

5.2.1 Local  Angle  Adjustments of AIRS  Observation 

The cloud-clearing algorithm assumes that the  observed  AIRS footprints falling 

within  the composite AMSU retrieval footprint differ only  in  the cloud amount. Other 

parameters,  such  as  the  viewing  angle,  are assumed constant over the 3 x 3 array of AIRS 

footprints being  used. This means  the 9 AIRS footprints at 3 different zenith  angles (9) 

must  be  adjusted to  a common central zenith angle ( 'peen) before cloud clearing is 

attempted. 

The coefficients of the correction are  based  on synthetic regression, a process in 

which  regression coefficients are generated  using  radiances  that are simulated for a range 

of cloud conditions and  profiles  that cover the expected atmospheric range. AIRS 

radiances  are  calculated for each of the 90 AIRS  viewing  angles  and  AMSU  radiances  are 

calculated for the  AMSU footprint viewing angle. Noise is added, but care must  be  taken 

that  it  be  treated properly. The  radiances  being calculated are  an attempt to simulate the 

measurement  that  would have been observed if the  viewing angle was different. Thus all 

other factors, including  the noise, do not change with  angle.  What this means for the 

simulation  is  that  the  added  noise  is  random over the  set of profiles and for each channel, 

but is constant over  the  viewing angle. In other words, once  the noise is  determined for a 

channel  and a profile, that same  noise  is  used for all 90 AIRS  viewing angles. It  must 

only  be constant over the 3 viewing angles that cover each AMSU footprint, but  it  is 

easier to keep it constant over all 90 spots. 

Let prof  be  the profile index, fp be  the footprint number, v be channel frequency  and 

'p be the zenith  angle, respectively; the noisy  radiance for a given profile, footprint, 

channel  and  local  zenith angle is: 

(5.2.1) 

where R, (prof, fp, v, 'p) is the  noise free radiance, and E( prof, fp, v) is  the  noise for 

the particular profile, spot, and channel. The consequence of not treating the  noise 
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properly  is to cause large errors in the predictants used to generate the coefficients, with a 

corresponding adverse  effect  on the resulting coefficients. Many angle adjustment 

procedures  currently  in  use do not properly  handle  the instrumental noise. 

In the following discussion, the term "weighting function" is used to denote the 

contribution function  that describes the region of the  atmosphere  being  viewed by a 

particular channel. The  observed  radiance for a particular  channel changes with angle in 

two  ways.  One  is  that  the  weighting function peaks  in a higher  region of  the atmosphere 

when  the angle moves  away  from nadir. The other is  that  the  weighting function 

becomes  slightly  narrower. This occurs because, to a first approximation, the majority 

contribution to the  observed  radiance for a particular channel arises within a confined 

slab of the atmosphere. When  viewed  at  an  angle,  the slab is thinner in atmospheric 

height. For  the  small  angles  under consideration, the second effect is small. If the 

weighting function peak for a channel is raised slightly  in  the atmosphere, there is a linear 

combination of  the  given  channel  with  nearby channels that, for a given profile, provides 

the  same  radiance  at  the  observed angle as  the  given channel would have provided if 

observed  at nadir. The correction procedure employed here seeks to find and  use  that 

linear combination. 

For a given channel, regression coefficients are generated that give the change in 

radiance  as a linear  function of observed radiances. Radiances are used rather  than 

brightness  temperatures to avoid Planck equation calculations. The exponentiation 

within  the  Planck  equation is computationally intensive. Furthermore, an error can  result 

if a low  temperature  coupled  with noise causes the calculated value to go negative. For 

daytime conditions, the  predictors are principal component scores of the eigenvectors of 

the  radiances  plus  the cosine of difference of the solar zenith angles between  the  AIRS 

and  AMSU observations. For nighttime conditions the  predictors are the  principal 

component scores of  the eigenvectors of the radiances. The additional term for daytime 

conditions is  proportional to the change in solar energy falling on a horizontal surface due 

to the change in  viewing  angle. This term  is  important for the shortwave channels. 

71 



AIRS  Level 2 Algorithm  Theoretical  Basis  Document  Version 2.1 

In  applying  the  angle correction, the first step is to normalize the  observed  radiances 

by dividing by the  instrumental  noise for the given channel. The  next  step is to generate 

the eigenvectors of  the predictors. In practice, the regression uses the 45 principal 

component  scores for the  45 eigenvectors with  the highest eigenvalues as predictors. Use 

of the eigenvectors prevents  the  solution from becoming singular. For daytime, the 

matrix of predictors  is  given  by: 

for nighttime,  the  matrix  of predictors is  given by: 

(5.2.2) 

(5.2.3) 

where E denotes the  matrix of eigenvectors and E(V) denotes the  instrumental  noise 

for the channel. Once  the  predictors are available, the  regression is given  by: 

where C(v,q) denotes the  vector of regression coefficients. 

The  vector of adjusted  radiances  may  then  be computed: 

(5.2.4) 

(5.2.5) 

where R ( v , ~ I ) ~ ~ ~  denotes the  vector of original measured radiances. 

Separate coefficients are  generated for day  and night. Although  the daytime 

coefficients may  be  used to calculate the  adjusted radiances at night, the errors that  are 

generated  are of the  same  magnitude  as those produced during the  day  and  thus larger 

than  they  would otherwise be. While the errors in the daytime corrections are small, 

nighttime corrections produced  with nighttime coefficients are  much  more accurate. This 

is an  important  consideration because in daylight, the visible channels can  be  used to help 

cloud  detection. At night, cloud detection  has to rely  on relationships between channels 
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at different wavelengths. The increased  accuracy for the short  wavelength channels is an 

important factor in the  ability  to detect clouds. 

5.2.2 Principles of Cloud  Clearing 

Infrared observations at  most wavelengths are affected by clouds in the field-of- 

view. Three basic approaches used for accounting for effects of clouds in satellite remote 

sensing are: 1) identify clear areas  and  only perform retrievals in those areas, with  no 

cloud correction needed; 2) use  channel observations in adjacent potentially  partially 

cloudy  scenes to reconstruct  what  the channel radiances would  have  been if the scenes 

were clear, and  use  these  reconstructed observations to determine geophysical 

parameters; and  3)  determine  both surface and atmospheric geophysical parameters, as 

well  as cloud properties, from  the radiance observations themselves. An example of the 

first approach  is  given  by  Cuomo et aZ.( 1993). Eyre (1989a, 1990) has used  the  third 

approach  in simulation by assuming  an  unknown homogeneous amount of black clouds at 

an unknown pressure, and  attempted  it  with  real TOVS data as  well (Eyre, 1989b). Our 

approach, like that  used  in  Susskind (1993), is of the second type  and is an extension of 

that  used  by  Smith (1968), Chahine (1974), and Chahine (1977). This approach utilizes 

satellite observed radiances, R i ,k ,  corresponding to channel i and  field-of-view k, made 

over adjacent fields-of-view. In this approach, there is no  need to model  the radiative and 

reflective properties of the clouds. The only assumption made  is  that  the fields-of-view 

are homogeneous except for the  amount of cloud cover in K different cloud formations in 

each field-of-view. Ri,c,r the  radiance  which  would  be  observed if the entire field of 

view  were clear and Ri,cld,l, the  radiance  which  would  be  observed if the entire field of 

view  were  covered by cloud  formation , are therefore assumed to have  the  same 

respective values in each field-of-view. If the observed radiances  in each field-of-view 

are different, the differences in  the observed radiances are then attributed to the 

differences in a&, the fractional cloudiness for cloud formation P in  field-of-view k. 

Using  the  above  assumptions, Chahine (1977) showed  that  the reconstructed clear- 

column  radiance for channel i, Ri,c lr ,  can be  written  as a linear combination of the 

measured  radiances  in  the K+l fields-of-view, Ri,l . . Ri,K+I, according to 
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where ql . . .  qK are unknown  channel  independent constants, and K+l fields-of-view 

(FOV's)  are  needed to solve for K cloud formations. The fields-of-view are ordered such 

that  FOV 1 is the clearest field-of-view based  on observations in  the 11 pm window  (the 

field-of-view  with  the  highest  11 pm radiances is assumed to be  FOV 1) and FOV K+l is 

the cloudiest. Thus ql multiplies the  largest  radiance differences and qK the smallest. 

Once ql . . .  qK are determined, Equation (5.2.6) is  used to produce  the reconstructed clear 

column  radiances for all channels used in the  retrieval process. The reconstructed clear 

column  radiances  are  then  used  when  solving for the geophysical parameters. This 

approach  has  been  successfully  applied  to fields-of-view, assuming one cloud formation, 

in  the analysis of HIRS2MSU operational sounding data by several authors (McMillin 

and Dean, (1982), Susskind et aZ.-(1984), Susskind and Reuter (1985a) and Chahine and 

Susskind  (1989))  and  is the method  used by NOAA/NESDIS  in  production of their clear 

column  radiances  used in generation of operational HIRS2MSU retrievals (McMillin  and 

Dean, 1982).  Chahine  and Susskind (1989)  show  that  retrieval accuracy, verified by co- 

located  radiosondes,  does  not degrade appreciably  with increasing cloud cover, for 

retrieved cloud fractions of up to 80%. Susskind  and Reuter (1985b) have performed 

simulations with  two cloud formations and  three fields-of-view for the  AMTS  instrument 

-- an earlier version of AIRS (Chahine, et al., 1984), used in conjunction with  MSU. 

The key to determining optimal  values of q lies is  in the best estimation of R~,cLR. 

There are two  basic approaches to this.  The first uses regression-based relationships 

between  microwave  channel brightness temperatures  and  AIRS clear column radiances. 

This will  be  referred to as  the  regression  based approach. The second computes the clear 

column  radiances  from a physical state, which is consistent with  the  microwave 

radiances. This will  be  referred to as  the  physically  based approach. There are  potential 

benefits  to  each  approach,  depending on the conditions encountered, and  both  are  tested 

as to which  performs  optimally to produce clear column radiances. The regression  based 

approach  has  the advantage that  it  can be determined from a sample of clear radiances 
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taken  shortly after launch  and produces cloud cleared radiances  that are independent of 

any errors in the  forward calculation procedure. This will  be particularly useful  in  the 

early stages of operation  after  launch  before  the  radiative transfer calculations have been 

optimized to account for detector characteristics and uncertainties in  the forward model. 

The  physically  based  approach  has  the advantage that it can  be iterated and  take 

advantage of the  infrared channels as the solution improves with each iteration. 

5.2.2 Physically  Based  Cloud  Clearing 

An improved  physically-based  methodology  has  been developed to account for 

multiple cloud formations using  the  AIRS/AMSU/HSB instruments, for use  in the final 

product  retrieval  algorithm. This methodology is also used as part of the  start up 

procedure to produce cloud-cleared radiances used  in  the first product retrieval. The 

methodology to determine rlk is first presented for a single cloud formation and  then 

generalized for use  with multiple cloud formations. 

5.2.3  Single  cloud  formation  with two fields-of-view 

For one cloud formation  and  two fields-of-view, the reconstructed clear-column 

radiance for channel i from Equation (5.2.6) is  given  by 

(5.2.7) 

Given these assumptions,  the  value of ql is independent of cloud spectral properties 

and  has the same  value for all channels. q, is written  in  terms of a, and a2 as 

rll = a1 
a2-a1 , (5.2.8) 

where al and a2 are the cloud fractions in  each field-of-view (Chahine, 1974).  It 

is not  necessary to know a, or a2 to determine q,. 

The  determination of q is sequential and is  done  in a number of passes  based  on  the 

latest estimate of the surface and atmospheric parameters. An expected value of R~,CLR 

for any  channel  can  be  used to estimate q according to 
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(5.2.9) 

th 
where qn is  the  n  iteration  estimate of q, obtained  from  channel i, based  on  the 

1 7 1  

th 
n  iteration  estimate of the  cloud-cleared  radiance R:,,, . R:CLR is obtained by using 

the  radiative  transfer  equation  to  compute  the i" channel  radiance  with  the  n  pass 

estimates of atmospheric  and  surface  parameters. The general  iterative  procedure 

indexed by n  is  discussed  later. 

th 

If the  estimated  temperature  profile  is too warm  (cold)  over  coarse  layers of the 

atmosphere,  the  estimated  cloud-cleared  radiances RZCLR are  too  high  (low),  and qtl is 

too large  (small).  In  performing HIRS2MSU retrievals,  Susskind et al. (1984)  correct 

potential  biases  in  the  n  iteration  coarse-layer  temperatures by adjusting  computed 

brightness  temperatures  for  the  infrared  channels  used  to  estimate q. The adjustment  is 

based  on  the  difference  between  the  observed  brightness  temperature for an  AMSU 

channel  sensitive  to  mid-lower  tropospheric  temperatures  and  that  computed from the n 

iteration  temperature  profile.  This  in  effect  adjusted the n  iterative  temperature  profile 

to be  consistent  with  the  observations  in  a  single  AMSU  channel. 

th 

th 

th 

The  superior  sounding  capability of AMSU,  compared  with  MSU,  is  utilized  to  first 

produce  an  AMSU-only  retrieval  of  atmospheric  temperature-moisture  profile. This is 

then  used  as  the  initial  guess  to  start  the  retrieval  process,  and  in  the  first  pass  estimation 

of q,. The  AMSU  retrieval is done  before the cloud  correction  because  AMSU  radiances 

are  not  affected  significantly by non-precipitating  clouds.  The  temperature  retrieval 

obtained from AMSU  has  the  property  that  radiances  computed from it agree  well  with 

all  AMSU  channels  and  is  unbiased  over  coarse  layers  of  the  atmosphere,  though  local 

errors  still  exist.  When  used  in  the  start  up  mode  before  the  first  product  retrieval, (n=O), 

the  radiances  are  calculated  based on the  microwave  product  state.  In  subsequent  passes, 

it is  ensured  that  state  also  agrees  with  the  AMSU  radiances. 
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Using different IR channels  in  Equation (5.2.9) results in different estimated values 

of qi,l due to a combination of local errors in the temperature profile, and channel noise 

effects. Many channels are  used to estimate q, in order to reduce potential errors. For  the 

case of a single cloud formation, this is accomplished  by  simply  taking a weighted 

average of qi.l over a set of cloud filtering channels to get a single value of q, as done in 

Susskind  and  Reuter (1985a) and Susskind et al.. (1993). Once a value of q, is 

computed, the  cloud-cleared  radiances for all channels are reconstructed using Equation 

(5.2.7). 

If the denominator in  Equation (5.2.9) is small, errors in estimating the  numerator are 

amplified  in the determination of q. Therefore, a large contrast in radiance between  the 

two fields-of-view is  important for cloud-filtering channels. 

5.2.4 Channel  selection for cloud  filtering 

Although  some  previous techniques (Chahine (l974), Halem et al. (1978), and 

Susskind et al. (1993)) used  the  15 pm longwave channels for cloud clearing and  the 

4.3 pm channels for retrievals,  the rationale for use of only  15 pm channels for cloud 

filtering neglected  the effects of solar radiation reflected off  cloud tops. When sunlight is 

reflected  off the surface and clouds, the scene can exhibit significant contrast in  the 

4.3 pm region, especially for low clouds. In addition, cloud effects on radiances can  be 

of opposite sign  at  short  wavelengths  than  at long wavelengths. This change in  sign eases 

the distinction of cloud effects on  the  observed radiances from thermal effects of the clear 

atmosphere. Therefore, it  is desirable to include 4.3 pm channels in  the  cloud filtering 

set  during the day. Furthermore, it is desirable to use the same methodology for both 

cloud filtering and  retrieval of geophysical parameters during the  day  and night. We 

therefore  use  both  15 pm and 4.3 pm channels to estimate q. The 15 pm and 4.3 pm 

cloud-filtering channels  are a subset of those  used to determine the  atmospheric 

temperature profile. Window channels are  more sensitive to clouds than  atmospheric 

sounding channels, but  are also more sensitive to uncertainties in surface parameters. 

Tthe methodology  has  been  improved to include window channels in  the  determination of 

q, weighted to reflect  the  uncertainty  in  the clear-column radiances. The same  weighting 
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procedure is used for all channels. The  relative  weighting of the 15 pm and 4.3 pm 

channels in  the  determination of q is  done  objectively  and differs under daytime and 

nighttime conditions as  is  described later. 

5.2.5 Determination  of q for a  single  cloud  formation 

Figure 5.2.1 is a flow diagram for the cloud-clearing program. 

Following Susskind et al. (1  993), set 

q =  
i 

I 

(5.2.10) 

where Wi is a weight for channel i. An appropriate value of  Wi account s for 

propagated errors in qi resulting from instrumental and computational noise. For 

example, channels more sensitive to clouds, with large values of I Ri,l - Ri,2 1 ,  receive 

larger weight. 

Equation (5.2.9) for i channels becomes in matrix form 

= W ( R 1 -  R2) qn (5.2.1 1) 

where W is an I x I diagonal weight  matrix  with weight Wii for channel i, 

( Rtlr - Rl) and ( R 1 -  R2) are I x 1 vectors,  and qn is the  unknown. The standard 

weighted least squares  solution to this matrix  problem is given  by 

T T  -1 
( R 1 -  R2) w w ( R 1 -  R2)] (El - R2)T WT w (RElr - Rl) 

(5.2.12) 

and  reduces  to 
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where qy is given  by  Equation  (5.2.9).  Equation  (5.2.13) is analogous to Equation 

(5.2.10),  but  in  Equation (5.2.13), the contribution of the  difference of radiances  in  the 

two fields-of-view to the channel  weight is explicitly taken  into  account.  Therefore Wi 

in this  context  represents  any  residual  weight factors, such  as effects of channel  noise. 

Susskind et al. (1993)  used  Equation  (5.2.1 l), including  in Wi the term l@i,1 - Oi,2lL, 

that is roughly  proportional to lRi,l - Ri,*r for  the 15 pm channels  they  used. 
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FIGURE 5.2.1 CLOUD CLEARING FLOW DIAGRAM. NOTE: THE FIRST PRODUCT EXEXUTES 
THE CLOUD-CLEARING MODULE IN HIGHLIGHTED SEGMENTS ONLY WHILE THE FINAL 

PRODUCT EXECUTES THE COMPLETE CLOUD-CLEARING PROCESS. 

The above  discussion is accurate  as  long  as  sources of channel  noise  are  uncorrelated 

from channel-to-channel.  Under  these  conditions, an appropriate  value of Wi is inversely 
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proportional to sources of noise. There are  two sources of noise in Equation (5.2.1 l), 

instrumental noise and  computational  noise. Instrumental noise is random and affects 

Ri, 1 and Ri,2. Computational noise affects RtCLR and are correlated channel-to- 

channel. In  the case of channel correlated noise,  the appropriate equation is 

-1 - T A-1  -n  
R1-  R2)T M-' (Rl - R2)]  (Rl - R2) M (RCLR - Rl)  (5.2.14) 

where M is  the  channel  noise covariance matrix, indicating errors in 

The iterative methodology to determine cloud-cleared radiances consists of three 

passes to determine q" (n=1,2,3), using  three sets of conditions, to give R & R ,  in  which 

R & R  and  hence q" become  increasingly  more accurate in each iteration. Each  pass  has 

its own M ,  reflecting expected errors in RECLR - R ~ J .  The noise covariance matrices 

are  modeled  according to 

(5.2.15) 

where N is the  observed  noise covariance matrix (see section 5.3.8, and equation 

5.3.33)  and  the  remaining terms are contributions to errors in  the computed value R ~ C L R  

from errors in  estimated surface skin  temperature, surface spectral emissivity, surface 

spectral  bi-directional reflectance of solar radiation, and temperature and  moisture  profile 

respectively.  The  partial derivatives are determined empirically by computing the 

radiance  using  the current estimate of each  parameter  and recomputing it after a small 

change  in  that  parameter.  The  profile  terms are obtained by either shifting the entire 

temperature  profile by 6T( P) or multiplying  the  moisture profile by  (1 + 6q(P)). In 

Susskind et al. (1998), the uncertainties, such as 6T,", are specified so as to be indicative 
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of  the expected errors for that  parameter in the nth iteration. These errors are predicted on 

a profile-by-profile basis for each  pass by propagating the expected sources of error 

through  the  retrieval process in  the  manner described in Section 5.4. A principal source 

of retrieval error arises from errors in  the  reconstructed cloud-cleared radiances. These 

errors propagate into degraded estimates of all  the variables shown  in Equation (5.2.15). 

5.2.6 Multiple  Cloud  Formations  with  Multiple  Fields-of-View 

In order to solve for K cloud formations with  unknowns ql . . . qK, K+1 fields-of- 

view are needed. A simple relationship between a k  and q k  does not exist for the case of 

multiple cloud formations, nor is the  solution q1 . . . qK necessarily unique. For example, 

consider a case of only one cloud  formation  with  cloud fractions of 20%, 4096, and 60% 

in fields-of-view 1 - 3 respectively. qf)  = 1, qf)  = 0 and q(12)=0, qf )  = 0.5 are two 

solutions to the problem, as are appropriate linear combinations of these solutions, given 

by 

(5.2.16) 

The  optimal solution provides the  correct cloud-cleared radiances and does so with 

the smallest values  of q in  order to minimize amplification of instrumental noise when 

used  in  Equation (5.2.6). 

Determining  an optimal set of q k  is analogous to the determination for a single 

cloud formation. Using a set of I channels to estimate K values of q ,  Equation (5.2.6) is 

expressed  as a set of linear equations in  matrix  form according to 

7 fR1,l  - R1,K+l  R1,l - R1,K * "  R1,l  - R1,2) (qf 

or 
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C n = D q n  , 

The  solution to Equation (5.2.18) is  given by 

(5.2.18) 

(5.2.19) 

where M is  the  channel noise covariance matrix  as  given in Equation (5.2.15). 

Given q" , R[cLR is constructed for all channels according to  Equation (5.2.6). RtcLR 
is  used  as  the  observation  in the subsequent retrieval process. If  the observation in a 

channel  is  not  sensitive  to the presence of clouds in  the field-of-view, it is better to 

average  the observations in all fields-of-view 

(5.2.20) 

This is  equivalent to defining separate values of q for channels that do not see 

1 
K + l  

clouds, TfCLR - - " , and using them to produce Ri,CLR for the appropriate 

channels. Currently, channel i is considered not to be sensitive to clouds if 

IRi,l - Ri,k+ll I31/2 Ni and  it is included in a set of channels expected not to see clouds 

given  the  retrieved  cloud height. 

The first product  retrieval algorithm calls the first part of the composite cloud- 

clearing  package  once, to provide the cloud-cleared radiance for inversion to thermal and 

humidity  profiles. The final retrieval algorithm calls the complete composite cloud- 

clearing  package  twice, providing cloud heights and cloud fractions in  addition to cloud- 

cleared  radiances. 

5.2.6.1 Contribution of clouds to  the rebieval channel noise covariance  matrix 

The  basic  retrieval  methodology  described  in Section 5.4 requires a channel noise 

covariance matrix M representing channel correlated errors in  the terms 

(Ri,CLR - Ri "1 and (- 'j,CLR - " 7 )  where Rr is the  radiance computed for channel i 
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based  on  the n iterative solution. The optimal solution for q minimizes  the noise in  the 

cloud-cleared  radiances. The channel noise covariance matrix  is  the  sum of two parts, 

resulting from noise in the  reconstructed clear column  radiances 6Ri with  noise 

covariance M ,  and noise in  the computed radiances 6R: due to uncertainty  in the 

th 

parameters, with  noise covariance M. Mii  = [6R6RT],. is the expected noise covariance 
11 

I 

matrix for the  channel clear-column radiances. The noise in Ri,CLR obtained from 

Equation (5.2.6) has two parts, arising from instrumental noise Ni , and  from cloud 

clearing errors coming from errors in q k ,  which  may  be correlated with  each other. 

Even  if  the  vector q k  were  perfect  then 

(5.2.21) 

In general, A(qk) is a channel noise  amplification factor resulting  from 

extrapolating cloud contaminated observed radiances to cloud-cleared radiances. 

Cloud-cleared  radiances for those channels affected by clouds have  an  additional 

error due to errors in q , giving  the  final  result 

(5.2.22) 

and  where 6q6qT is the error covariance of q and D is  defined  in Equation (5.2.18). 

If M ,  as  defined in Equation (5.2.15), is indeed representative of the noise in the 

determination of q ,  then 

[ 6q6qT] = [ D M"DT 1' (5.2.23) 

where D in  Equation (5.2.23) refers  only to those channels used to determine q . 

6q6qT is therefore  based  only  on observed channel radiance differences in the separate 

fields-of-view  and  the  modeled channel noise covariance matrix  used to determine q , 

84 



AIRS  Level 2 Algorithm  Theoretical  Basis  Document  Version 2.1 

and  hence  is  easily  computed for a given profile and substituted in Equations (5.2.22) to 

give M for channels affected by clouds. 

In the  special case for which  channel i is determined to not “see” the clouds (i.e., 

stratospheric sounding channels or tropospheric sounding channels peaking significantly 

above  the  highest cloud top), radiances  in the k fields-of-view are averaged for the cloud- 

cleared radiances.  For these channels, the scene appears to be clear and effective values 

of ~ C L R  are defined for “clear” channels as ~ C L R  = - 1 /(K + 1). For these channels, 

A(qCLR,k) = z /k+l ,  which  is a noise reducer. For “clear” channel i, 
1 

(5.2.24) 

where j is any other channel and 6, is the  Kronecker delta function. 

Even  if  only 2 cloud formations exist, it is better to make  use of the characteristics of 

radiances in all 9 fields-of-view than to arbitrarily divide  the 9 spots into 3 equal area 

fields of  view as  done by Susskind  et al. (1998). There are numerous  reasons for this. 

Equation (5.2.6) extrapolate Ri,CLR from R i. I with coefficients qk.  One desires: 

I 

(1) Ri, 1 to be  as close to Ri,CLR as possible to minimize extrapolation, 
(2)  to  maximize  the contrast between different fields-of-view to have lower values of q k  

(3) to use the average of  many fields-of-view to minimize  noise effects. 
and less noise amplification, and 

If, for examples, footprints 1 and 2,3-7, and 8 and 9 each have  roughly equivalent 

scenes, it  is  better to group them  accordingly to form the  three fields-of-view. 

5.2.6.2Selection of Optimal Fields of View 

Rather  than choose radiances for the  warmest  field-of-view to be  the average of the 

three highest  radiance  valued observations, N, is  the  average of nearly equivalent 

observations to give Ri,l , where N, is  variable  and  scene dependent. This leaves 9- 

N,=N, other fields of  view  (when  dealing  with observations in 9 spots) giving  the 

equation 
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(5.2.25) 

It is advantageous to take a linear combination of the remaining N, fields of  view 

Ri,l = Uk,k'  &,kt (5.2.26) 
- k,k' 

where U is  dimensioned N, x N,. U is chosen so as to diagonalize DT M-' D [ I  
[ UT(DT M-' D)U] = h.  J 6. J.J' . (5.2.27) 

j,j' 

The solution  in  this  transformed  space  becomes 

where 

- i j=UTij  and i j = U  - ij . 

The  solution for ij is given by - 

(5.2.28) 

(5.2.29) 

where ARCLR is (Rj,cLR - R j , l ) .  Cloud-cleared radiances are most  easily 
- 

obtained  in  the  untransformed  space  using Equations (5.2.30), (5.2.29), and (5.2.25). 

If all N, eigenfunctions of U are  used  in Equations (5.2.28) and (5.2.30), then  the 

results  would  be  identical to those in  the untransformed space. The eigenvalues h j  

provide  information  about  the degrees of freedom in  the observed radiances. Significant 

eigenvalues correspond to different cloud formations in  the scene, while  small 

eigenvalues arise from various sources of noise such  as instrumental noise  and  non- 

homogeneities  in  the clear portion of  the scene. The solution is stabilized in  transformed 
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space by keeping  only a subset of  N, eigenvectors, which  provide  the N, optimal linear 

combinations of observations in  untransformed space. 

The eigenvalues are  representative  of signal-to-noise in  the solutions. Typical 

eigenvalues for the  first  cloud formation are the order of 10000 and for the second, the 

order of 1000. Subsequent eigenvalues in cases with a two cloud formations are typically 

less  than 100. Eigenvectors with eigenvalues less than 20 are eliminated. 

Aside from reducing  noise  and determining the number of cloud formations from the 

data,  transforming  the fields-of-view provides a better treatment of the estimated noise in 

the  cloud-cleared  radiances  because  the error in q j  is uncorrelated with that in q j t .  The 

contribution to the  channel noise covariance matrix arising from instrumental noise 

- - 

(5.2.31) 

where A i 1  can be  shown to be a statistical estimate of  if  Nij represents 

the  true  noise covariance error. Hence, the details of the channel noise covariance matrix 

are  not  needed to compute M .  

The  accuracy of Xi1  is  predicted from the subset of Nc cloud clearing channels. 

Calculate  the RMS of the  radiance residuals as  the difference between  the cloud cleared 

radiance estimate, RECLR, and  the  cloud cleared radiance  value, Ri ,  CLR, over the Nc 

cloud clearing channels. The  prediction is accurate if this matches ci Mii  . The case 

dependent  uncertainty  in  the noise covariance is given  by  the difference of these two 

values 
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To produce a more accurate estimate of the channel noise covariance matrix, an 

additional  uncertainty is added to the extrapolation uncertainty estimate, 6ii, - if 6c2 is 

positive. The  best  way to add  the uncertainty is to only  modify  the predicted value of 

6q1 , since higher order 6qj terms require more knowledge of the interaction 

extrapolation parameters for multiple cloud formations. Therefore, only 671 is 

modeified if 6c2 is  positive, by adding a term 6’q as follows 

- - 

- 

-k 

2 6c2 
- k -  s; 6’q - -+0.Ol2 fork = 1 

where S, is  the  RMS channel contrast in transformed space 

(5.2.33) 

(5.2.34) 

The  additional factor of 0.01 is to allow for a null  space error between  the surface 

retrieval  and  the  cloud clearing parameter retrieval. The  total error estimate for the  cloud 

cleared  radiances for all  the channels is now expressed as 

(5.2.35) 

where  A  is  the  noise amplification factor shown  in  the first bracket in Equation 

(5.2.31). The ability to average N, spots to produce radiances for field of  view  1 

significantly  reduces  A. The use  of the truncated transformation  matrix U also lowers the 

noise  amplification factor, as  low values of h which  would contribute to large values of 

q have  been eliminated. 

k 

k 

From  Equations (5.2.31) and (5.2.35), it  is  apparent  that  increasing N, is desirable. 

On  the other hand,  it is also desirable to maximize contrast between  the fields-of-view to 

minimize  the  values of q and extrapolate least from Ril. The field-of-view containing 
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the  highest  radiance in a select 8 pm cloud filtering window channel is  always  included 

in Rl . In addition, for each  other field-of-view, the standard deviation  is evaluated over 

all  cloud filtering channels of  the difference between this radiance  and  that  in field-of- 

view 1 

(5.2.36) 

and select the  radiances  in fields-of-view to be averaged with Ri,l into R ~ , J  if os < - 
0.3 or 0, 0.2 MAX (0,). If more  than  three fields-of-view satisfy this criterion, the 

three  with  the  lowest  standard deviations are selected, so as to maximize N, at 4. A 

special case arises if  all eigenvalues h are less than 20. Here, no clouds are  present  and 

set N, = 9, averaging radiances  in all 9 spots. 

k 

5.2.6.3 Regression  Approach to Find Ri,CLR 

An alternative to computing R i ,  CLR is to use regression-based relationships between 

Ah4SU observations and clear column radiances for a set of AIRS driver channels. These 

relationships are found shortly after launch  by identifying areas where no clouds are 

thought  to  be  present in  any  of the 9 fields-of-view. Such areas are identified when  only 

low eigenvalues of (DT M-' D) exist [see Equation (5.2.27)] and  the  values of R" 

computed  physically are very close to R i ,  CLR. The regression-based approach  depends 

on driver channels. These are channels for which  an estimate of  the clear column 

radiance is obtained  from  the  microwave measurements. These channels are selected  in 

the following manner.  For  each of 10 atmospheric microwave channels (5-14), the  four 

AIRS  channels  with  the  highest  correlation  with a particular AMSU  channel are selected. 

Although  only  one  channel  is needed, four are selected to reduce  the  noise  in this crucial 

step. Then  angle  dependent  regression coefficients are generated, based  on observations 

in  the clear cases, to predict each of these 40 AIRS channels from  the 10 AMSU 

i,CLR 
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channels. The  predicted  cloud-cleared  radiances  become the values of R i ,  CLR used in 

subsequent inversion of level 2 parameters. 
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5.3 First Product 

5.3.1  AIRS  First  Guess  Regression  Procedure 

An eigenvector global  regression procedure provides fast and accurate initial guesses 

for temperature  and  moisture  profiles  as  well  as surface emissivity. All  independent 

AIRS  radiances are preprocessed by the cloud-clearing module described in  the last 

section. Following  the  approach of Smith & Woolf (1976), eigenvectors from a 

brightness  temperature covariance matrix, calculated over some dependent training 

ensemble, are  used  as basis functions to represent  the  AIRS/AMSU/HSB radiometric 

information. Eigenvectors of covariance matrices are  commonly referred to as 

Empirical  Orthogonal  Functions (EOF’s) in the literature, a convention that will  be 

adopted  throughout  the remainder of this section. Because of the large number of 

channels  measured by AIRS/AMSU/HSB,  the eigenvector form of  regression is crucial 

for exploiting the  information content of all channels in a computationally efficient form. 

By representing radiometric information  in  terms of a reduced set of EOF’s (much  fewer 

in  number  than  the  total  number of instrument channels) the dimension of the  regression 

problem is reduced by approximately  two orders of magnitude. Another  advantage of 

using a reduced  set of EOF’s is that  the influence of random noise is reduced by 

elimination of higher order EOF’s which are dominated by noise structure. It should be 

noted  that if all EOF’s are retained  as basis functions the eigenvector regression  reduces 

to the  ordinary least squares regression solution in  which satellite measurements are used 

directly  as predictors. The mathematical derivation of the EOF regression coefficients is 

detailed  in  the following sub-sections. 

5.3.2 Generating  the  Covariance  Matrix  and  Regression  Predictors 

A training ensemble of temperature, humidity,  and  ozone profile data are used to 

generate  brightness  temperatures for all  AIRS/AMSU/HSB channels. The deviations of 

the brightness temperatures from their  sample  mean are stored  in the matrix AOTrain, a 

matrix of dimensions [nchan x nsamp], where nsamp is the sample size of  the  training 

data set  and nchan is the  total  number of instrument channels. The brightness 
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temperature  covariance  matrix from which  the EOF's are  derived is then  generated  as 

follows: 

1 m 

(5.3.1) 

where  superscript T denotes  matrix  transpose  and  the  matrix O,,, is a  square  matrix 

of order nchan. The  diagonal  elements of O,,, represent  the  variance of the respective 

channel  brightness  temperatures  while  the  off  diagonal  elements  represent  the  covariance 

between  pairs of channels. An eigenvector  decomposition  is  performed  on  the  matrix 

O,,, giving: 

e,,, = rArT (5.3.2) 

where r is  the [nchan x nchan] matrix  containing  the  eigenvectors,  or EOF's, of 

O,,, in  its  columns. A is the diagonal  matrix of eigenvalues,  the  first  eigenvalue  being  the 

first  diagonal  element,  the  second  eigenvalue the second  diagonal element, etc. The 

EOF's are  ordered in terms of the  amount of the total data variance  each  explains;  the 

first  explains  the  most  variance  and  each  successive EOF explains  progressively  less of 

the  total  data  variance.  As  discussed  in  the  beginning of this  section,  some  subset of the 

total  number of EOF's is  best  for  capturing the information  content of the radiometric 

data  while  minimizing  the  effects  of  random  measurement  noise.  For  the  purposes  of 

notation  let m be  the  optimal  number of EOF's for describing  the  information  content of 

the  covariance  matrix  from  Equation  (5.3.14).  Considering  the  large  number  and 

interdependent  nature of the  AIRS/AMSU/HSB  weighting  functions  it is reasonable  to 

assume  that m cc nchan, where m represents  in some sense  the  number of independent 

pieces of information  available from the measurements.  Experiments  with 

AIRS/AMSU/HSB  simulated  data  have  shown m = 40 to  be  optimal for capturing  the 

information  content of the  measurements from these  three  instruments.  Only  very  small 

improvements  in  retrieval  accuracy  have  been  observed  when  using  greater  numbers of 

eigenvectors.  Once m is  determined from experimentation  those EOF's are  used  as  basis 

functions  to  represent  the  original  brightness  temperature  information  in  terms of 
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expansion coefficients commonly  referred to as principal  components. First we express 

do,,,, as  an  expansion of the EOF’s as follows: 

.+ 

where AT&.ain is the j th column of matrix AoTrain and ai, a i  , e .  . , a i  are the 

corresponding m principal components for the jth sample. In order to solve  Equation 

(5.3.16) for the  individual principal components recall  that  the EOF’s F1 ,r2,.. .,Fm are 

mutually orthonormal. That is: 
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ri r.= (5.3.4) 

where ( 0 )  denotes the inner product of two vectors. Using  the condition of 

orthonormality  and the distributive property of  the ( 0 )  operator, each individual principal 

component is expressed as: 

ai = AT&.ain Fi i = 1 ,  2, e . - ,  m and 

j = 1, 2, e . . ,  nsamp 
(5.3.5) 

5.3.3 Generating  the  Regression  Coefficients 

A standard least squares regression technique is used to generate regression 

coefficients using  an a priori training database such  as  an  operational radiosonde match 

file. The following regression  model  is  used to generate the coefficients: 

AV = CA,, (5.3.6) 

where AV is  the  matrix of deviations of the predictants (temperature, moisture etc.) 

from the  training sample mean, ATrain is  the [m x nsamp] matrix of principal components 

calculated using  Equation (5.3.5), and C is the [n x m] matrix of regression coefficients 

to be  solved for where n is  the total number of predictants. More specifically: 

(5.3.7) 

(5.3.8) 

where n = number of predictants (i.e. the  number of temperature, moisture, and/or 

emissivity/reflectivity points), nsamp = number of samples in the training set, m = 
number of principal components used  and  bars indicate averages over the training sample 

set. 
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The least squares  regression  solution of Equation (5.3.6) is: 

(5.3.9) 

where the T superscript denotes matrix transpose, and the -1 superscript denotes 
matrix inversion. 

5.3.4 Applying  the  Coefficients to Independent  Data 

Once  the coefficient matrix, C, is calculated from equation (5.3.9) the coefficients 

may  be  applied to independent data using equation (5.3.6). The matrix defined in 

equation (5.3.20) would  now contain deviations of the  independent data from the training 

sample mean. Mathematically, the  application process is: 

V = v + CA,,, (5.3.10) 

where V is  the [n x nobs] matrix of retrievals, v the  training vector from equation 

(5.3.7), C is the [n x m] matrix of regression coefficients from equation (5.3.9), and Aobs 

is  the [m x nobs] matrix of principal components calculated from the  level 1B 

observations. Aobs is  generated  using equation (5.3.5) where A@,,, is replaced  with 

ALOobs, the  matrix of deviations of observed brightness temperatures from the training 

mean. 

To account for off-nadir view positions the principal components in equation 

(5.3.10) are adjusted to nadir. This is  accomplished by generating apriori coefficients to 

predict  nadir  principal components from off-nadir principal components (i.e. limb 

adjustment).  Limb  adjustment  is  used  only  in  the  regression  step. The physical  retrieval 

algorithms  are  applied to radiances at  the  given  view angle. 

5.3.5 Minimum  Variance  Physical  Retrieval 

Given a set of radiances, the objective of a physical  retrieval algorithm is to find a 

realistic  solution of geophysical parameters that  will  be consistent with those radiances. 

The  derivation  begins  with linearizing the radiative transfer equations (RTE) for 

microwave  and  infrared  about  some a priori estimate. This is accomplished by 
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expressing brightness temperature  or  radiance ( RG) in equations (4.1.2) and (4.2.1) as a 

function of the  regression  guess  using a first order Taylor expansion such that: 

(5.3.11) 

where R: is  the  total  integrated  radiance for frequency u computed from the 

regression solution and  the RTE, v k  and V,” are the  kth elements of the  solution  and 

regression first guess geophysical  parameter vectors, dR, / dvk is  the  incremental change 

of  the  radiance  with  respect to a incremental change in a particular geophysical parameter 

(e.g. V,= temperature at 50 mb),  and N is  the number of geophysical parameters. The 

value of dR, / dVk is computed  in a manner similar to Eyre  (1  989a) by differentiating the 

numerical quadrature form of the  RTE  with respect to the geophysical parameters (see 

section  “Computation of the  Kernel Matrix”). Currently the  geophysical parameters 

solved  in  the  physical  retrieval include surface and atmospheric temperature  and 

moisture. The above  equation is re-expressed  in  matrix  notation as, 

(5.3.12) 

where 6 represents the  vector of cloud-cleared satellite observations for all  retrieval 

channels, RO represents  the  vector of radiances computed from  the  regression first guess 

for all  retrieval channels, ? and ?O represent  the solution and  regression first guess 

geophysical  parameter  vectors,  and A, commonly  referred to as  the  kernel matrix, 

contains the  partial derivatives of radiance  with respect to each of the individual 

geophysical  parameters  and for each of the retrieval channels. A minimum variance 

solution for ? is  employed  in  the  retrieval process. Minimum variance has  been  used  in 

the NOAA TOVS  operational  retrieval system since 1988  (Fleming et.  al., 1986; 

Goldberg et. al.,  1986).  There are an infinite number of ambient  atmospheric states that 

will  satisfy  the  RTE to within  the  system noise (i.e. instrumental + cloud-clearing + 
transmittance). The minimum  variance solution uses a priori constraints, in  the form of a 

regression estimate and covariance matrix of regression errors, to produce realistic 
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atmospheric  profile  solutions  minimizing  the  average  squared-error  over  an  ensemble. 

The  iterative  matrix form of the solution  (Rodgers,  1976): 

?n+l = Qo + (A;~N-~A,  + S-1 )-IA:N-I { (R - R,,) - A, (Qo - ?" )} (5.3.13) 
+ 

where Vn+l is the n+l iterative  estimate of the  retrieved  temperature  or  moisture 

profile, ?, is the  n-th  iterative  estimate of the  retrieved  profile, V0 is the  initial  guess 

profile of temperature  or  water  vapor  mixing  ratio, g i s  the  vector of satellite  observed 

radiances, I?, is  the  corresponding  vector of radiances  computed from the  most  recent 

iterative  solution, A, is  the  kernel  computed from the  most  recent  iterative  solution, N is 

the  estimated  radiance  (observation)  noise  covariance  matrix,  and S is the  estimate of the 

background  error  covariance  matrix  between the truth  and  the  retrieval  estimate. 

Superscripts T and - 1 denote  matrix  transpose  and  matrix  inversion,  respectively. 

Temperature,  surface  temperature,  and  water  vapor  are  retrieved  separately  rather 

than  simultaneously  with  the  temperature  retrievals  preceding the water  vapor  retrieval. 

The  temperature  profile is retrieved  first  using  channels  selected from the 15pm and 

4.3pm bands  that  are  relatively  unaffected by water  vapor. By first  improving  the 

temperature  retrieval,  the  subsequent H,O retrieval  will  be  more  accurate  because  the 

temperature  component of the  signal  in  the  water  vapor  channels  will  be  better  accounted 

for. Both  retrieval  steps  can  be  iterated,  however  experiments  with  simulated  data  have 

shown  that  often  the  initial  guess  departure from the  truth  is in the linear  regime  such  that 

only  one  iteration  is  required. 

5.3.6 Expressing  the  Retrieval  Solution  in  more  Computationally  Efficient 
Form 

The  retrieval  solution  in  equation  (5.3.13)  can  be  expressed  in a more 

computationally  efficient form using  eigenvector  methods.  Because S in  equation 

(5.3.13)  is a real  symmetric  matrix it may  be  written: 

s = rArT 
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where I- is an  [n x n] orthonormal matrix, A is an  [n x n]  diagonal matrix, and 

superscript T denotes matrix  transpose. Substituting equation (5.3.14) into equation 

(5.3. 

(5.3. 

13) and  making  use of  the properties of eigenvectors it  is  easy to show  that equation 

13) can  be  written  in  the following equivalent form, 

AV=r(r T AnN T -1 AnT+A- 1 ) -' r T AnN T -1 {AR-An(Vo-Vn)} (5.3.15) 

The [n x n] matrix r contains the n orthonormal 'eigenvectors' of S in it's columns 

and  the  diagonal  matrix A contains the n ordered 'eigenvalues' of S. More specifically 

(5.3.16) 

where [r,, r,, ..., r,] are  the n eigenvectors of S and [h,, &, ... , h,] are the 

corresponding eigenvalues. 

The dimensions of the  matrix to be inverted in equation (5.3.15) is reduced by 

truncating  the  matrices of eigenvectors and eigenvalues. If  we retain m of the n 

eigenvectors ( m < n ) then equation (5.3.15) is rewritten: 

where W is a tuning parameter, and  the definition of EA-' and F are as follows: 

- 
and r = 

1 

(5.3.18) 
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Notice  that  the  dimension of the  matrix to be inverted in equation (5.3.17) is [m x m] 

compared to the larger [n x n] matrix  in equation (5.3.15). In  addition to reducing the 

number of floating point operations, truncating the eigenvectors may also filter out 

unwanted  noise  in  the  retrieval process by excluding higher order terms containing 

spurious information. 

Settings for the  tuning parameter, y, and  the  number of eigenvectors retained, m, are 

different for water  vapor  and  temperature retrievals. Experimentally determined values 

for (G,  m) are currently set  to (1.5, 15) for temperature, and (60, 15) for water vapor. 

5.3.7 Computation of the  Kernel  matrix 

The elements of the A,, matrix  in Equation (5.3.17)  are  derived for infrared and 

microwave  channels  using a quadrature form of equations (4.2.1) and (4.1.2). As 

discussed,  the elements of A, are derivatives of radiance (brightness temperature for 

microwave)  with respect to individual geophysical parameters (e.g. 50 mb temperature, 

500 mb  water  vapor  mixing ratio, surface temperature) from the  most recent iterative 

solution. We  begin  by  writing equations (4.2.1) and (4.1.2) in quadrature form using  the 

trapezoidal  rule  of integration. For the  IR  region  the quadrature form of equation (4.2.1) 

is, 

where J represents the  number of discrete pressure levels of the fast transmittance 

model,  pj  is  the  pressure  at  the jth pressure  level  and all other quantities are as  defined in 

equation  (4.2.1).  Similarly for the  MW region of the  spectrum equation (4.1.2) is 

expressed in equivalent quadrature form, 

(5.3.20) 
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where Tt(pj) = T t ( P K ( p j )  . Equation (5.3.20) can  be simplified by using  notation 

for effective transmittances, combining the upwelling and downwelling microwave 

components of radiance into a single term. The form of the simplified equation is 

where z indicates the effective transmittance and  is defined, 

Taking the derivative of equations (5.3.19) and (5.3.21), both  with  respect to 

temperature  and  water  vapor  mixing ratio, gives the elements of A,. 

Making  the  assumption  that  transmittance is independent of temperature  the 

temperature elements of A, for infrared channels are defined as, 

(5.3.21) 

(5.3.22) 

(5.3.23) 

for surface skin  term 

where J is  the  number of atmospheric levels and j = J corresponds to the lowest 

atmospheric level, T, is the  atmospheric transmittance from the surface to space, 71< is the 

atmospheric transmittance from  the jth atmospheric pressure level to space, E, is the 

surface spectral emissivity, and dB / dTk is the derivative of the Planck function 

evaluated  at channel i and  atmospheric  temperature T,. Similarly for the  microwave 

region  the  definition  of  the  temperature elements of A, are as follows, 
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(5.3.24) 

ITS for surface  skin  term 

where  the  effective  transmittance, ?, is as  defined  above. 

The  water  vapor  elements of the A,, matrix  for  IR  channels  are  defined  as  follows, 

(5.3.25) 

where BTsunis the  Planck  function  evaluated for channel i at  the  temperature of the 

sun, B, is  the  Planck  function  evaluated for channel i at  the  first  guess  level  temperature 

T,, 8 is  the  solar  zenith  angle, p v  is the  surface  spectral  reflectivity for channel i, x, is 

the  initial  guess  mixing  ratio  at  level k, and  all  other  terms  are  as  defined  in  equations 

(5.3.22)  and  (5.3.23).  Assuming  an  isothermal  atmosphere  above  the  uppermost  pressure 

level  the  definition of the  water  vapor  elements of A, in  the  microwave  are  as  follows, 

The  derivative  terms  in  equation  (5.3.26)  are  evaluated  using  the  definition of 

effective  transmittance from equation  (5.3.22), 

which  after  some  manipulation  reduces  to the following  form, 

(5.3.27) 

(5.3.28) 
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The derivative of transmittance with respect to water  vapor  is  given  by: 

where qk, the precipitable water from the  space to pressure level k, is calculated by: 

the derivative of precipitable water  is  given  by: 

((1/2g)(Pj+l- pj-1) for j k 

(1/2g)(p, - p,-1) for j = k 

(5.3.30) 

(5.3.31) 

Io for j > k 

and  the derivative of the natural log of transmittance with respect to precipitable water 
is: 

dhTk Pn(Tk-1) - en(Tk) 
Tk- - 

dq k qk-1 - qk 
- Zk 

[Note: 7, = 1 in  the calculation of the above derivatives.] 

(5.3.32) 

5.3.8 The  Observation  Noise  Covariance  Matrix  N 

The  observation noise covariance matrix, N, is  nominally a diagonal matrix  whose 

non-zero elements (the diagonal elements) represent  the observation noise. In  the case of 

a clear  AMSU field of  view  the  diagonal terms for AIRS  is 119 the variance of the AIRS 

instrumental  noise for each of the retrieval channels, since all 3 x 3 AIRS footprints 

within  an  AMSU footprint are averaged. Thus N has the form: 

-0; 

0 N =  

0 

. 

- 0 

... 

... 

0 

- 
0 
0 
0 
2 

On - 

(5.3.33) 

The diagonal values, [ 01 ,02,".,0,], represent  the noise of the n retrieval channels, 2 2  2 

and  all  off  diagonal elements (i.e. all interchannel covariances) are assumed to be zero. 

Operationally N will include the total  system  noise  and  may include off diagonal 

elements. The  total  system  noise for each channel is due to the combined effects of 
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measurement  noise, cloud-clearing extrapolation (which is output from the cloud-clearing 

algorithm),  forward  model inaccuracies, and calibration error. 

5.3.9 The  Thermal and Moisture  Covariance  Matrix S 

The retrieval  parameter covariance matrix, denoted by S in  the previous 

mathematical  description of the  physical retrieval, represents the expected error of the 

background field. As discussed above, a background field is generated from a regression 

scheme  using a large training data base to estimate geophysical quantities from principal 

components derived from AIRS/AMSU/HSB brightness temperature observations. The 

same  training  data  is  used to estimate the magnitude of expected  background errors when 

the  regression coefficients are  applied to independent data. The coefficients, matrix C 

from equation (5.3.22), are applied  back to the dependent training data as follows: 

AV = CAT (5.3.34) 

where AV is  the  regression  retrieval of the  dependent  geophysical training data 

AVin  equation  (5.3.7).  The covariance matrix, S, is then calculated as follows: 

1 
m 

S = --ET, where E = AV - AV 

where S is an [n x n] matrix  whose diagonal elements represent  the expected 

background  variance of each of the predictants, and  whose off diagonal elements 

represent  expected  interlevel covariances amongst the  various predictants. 
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5.4 Final Product 

5.4.1 Introduction 

To satisfy  the science requirements of NASA’s Earth Science Enterprise, a final 

adjustment is made to the first product based  on  the difference between calculated and 

cloud-cleared radiances. It  is  here that the cloud parameters, and  the  research  products 

(not described in  this  document) are calculated. 

When  solving for a set of geophysical parameters, it  is  desirable to be able to choose 

an  appropriate  set of parameters to solve for and select channels that are both sensitive to 

those parameters and  relatively insensitive to other parameters. In general, channels will 

be  affected by more  than one type of parameter. For example, channels with radiances 

sensitive to the  water  vapor  or ozone distribution are also sensitive to the temperature 

profile  and  often to the surface skin temperature. Our approach is to solve sequentially 

for the surface parameters,  temperature profile, water vapor profile, and ozone profile in 

that order. In this approach,  variables  already  solved for, used in conjunction with first 

guess variables, are kept fixed when solving for the next set of variables. Table 5.4.1 lists 

the variables  solved for and  the number of channels used in  each  step.  The above order is 

chosen because channels  can  be selected for a given step that  are  relatively insensitive to 

variables to be  solved for subsequently. 

The iterative solution  to  the  problem contains equations that are of the form of 

equation  (5.3.13).  However,  the final product  methodology solves for updates to 

coefficients of functions of temperature, moisture, etc., rather  than updates to the 

geophysical  parameters themselves. Therefore, the terms in  the equation have a very 

different  meaning.  For this reason, a different notation is  used so as  not to confuse the 

reader. For example, in place of A in  the  analog  of equation (5.3.13), which refers to the 

derivative of the  radiance  with respect to changes in a geophysical parameter, the 

sensitivity of the  radiances to changes in  the coefficients of the  expansion functions, S, is 

used. 
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A total of 278  AIRS channels, 15 AMSU A channels, and 4 HSB channels are 

selected for use in the  AIRS/AMSU/HSB  retrieval algorithm. Some of the surface 

parameter  sounding channels are also used in the  water vapor or temperature profile 

retrievals. Therefore, the total  number of channels is less than  the  sum of the channels in 

column 2. Likewise, the  water  vapor  solved for in  the  ground temperature retrieval is 

subsequently  updated  in  the  water  vapor  profile  retrieval step. The 297 channels are used 

to solve for 42 variables. 

The  general  AIRS/AMSU/HSB  retrieval algorithm does not require any field-of- 

view  to  be cloud-free (Susskind et al., 1996). The algorithm used  in the final product 

retrieval consists of the following main steps: (0) Obtain  an initial guess for the 

temperature, moisture, and  ozone profiles. (1) Derive a first estimate of the cloud cleared 

radiances  and  channel  noise covariance matrix. (2) Retrieve surface parameters. If 

necessary, the first guess  and cloud-cleared radiances may  be  improved  at  this point and 

the surface retrieval  may  be  repeated. This loop ends the basic startup procedure. (3) 

Retrieve  temperature profile. (4) Retrieve water  vapor profile. (5) Retrieve ozone 

profile. (6) Produce final cloud cleared radiance estimates. Repeat  (2) - (3) starting with 

updated  cloud cleared radiances  and  water  vapor  and ozone profile. The general 

approach to solve for the parameters in steps (2) - (5) is  in the form of iterative 

constrained least squares solutions, one for each set of variables to be  solved for. The 

form of the equations to be  solved  is identical for each of the four steps. More details 

about  the steps in  the final product  retrieval algorithms are given below. 
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Variables 

T, , A!nW , 8 IR spectral emissivity 
functions, 3 IR spectral bi-directional 
reflectance functions, MW spectral 

emissivities 

14 layer temperature- 
functions (trapezoids) 

8 layer column density functions 

5 layer column density functions 

Channels  Frequencies 
Ground Temperature Retrieval 

23  758 + 1235 cm-l 
35 
6 

2170 + 2669 cm-l 
23.8-150  GHz 

Temperature Profile Retrieval 
103 651 + 768 cm-l 
33 
12 

2228 + 2501 cm-l 
50.3 + 57.29 GHz 

Water Vapor Profile Retrieval 
69  790 + 2650 cm-l 

Ozone Profile Retrieval 
23 1001 + 1069 cm-1 

54 150-183.31 GHz 

Total: 42 variables 297 channels (AIRS + AMSU) 

TABLE 5.4.1. VARIABLES AND CHANNELS 

Steps in the AIRS Final Product Algorithm 

1. Obtain an initial guess which agrees with AMSU and  HSB radiances. This is 
obtained from the first product physical retrieval, followed by a temperature profile 
retrieval using  AMSU  A radiances and  AIRS radiances for channels sounding 
above the clouds, sequentially followed by a water vapor retrieval using  HSB 
radiances. 

2. Determine an initial qk from equations (5.2.30) and (5.2.29), using the initial guess 1 

parameters. Allow a maximum of two q’s. Also produce the retrieval noise 
covariance M1 as described later. 

3. Perform a start up surface parameter retrieval using R f  obtained from equation 
(5.2.20). All channels used in this step are sensitive to clouds, so there is no  need  to 
retrieve cloud height. 

4. Produce an improved AMSU temperature profile retrieval, using the retrieved 
value Ts , and radiances in  AMSU channels and a set of  AIRS stratospheric 
sounding channels which do not see the clouds. 

1 
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5. 

6-9 

10. 

11. 

Determine  updated q t  taking  advantage of the  refined  parameters.  Allow a 
maximum of three q's. Also  determine  cloud  parameters  to  decide  which  channels 
do not  see  clouds. This information  is  used  to  produce Ri as  well  as  the  retrieval ^ 2  

,. 

channel  noise  covariance  matrix M L  . This is the  end of start up system. 
Use Ri and M to  refine  the  surface  parameters,  temperature  profile,  humidity 
profile,  and  ozone  profile. These steps  give  the  first  pass  retrieved  parameters. 
Using  the  first  pass  retrieved  parameters,  determine  refined qk 3 , allowing  up  to 4 
values of q and  final  cloud  parameters. 
Produce  the  final  clear  column  radiances Ri , which  is a product of the  system,  and 

- 2  2 

- 3  

M5 . 
12.  Perform a test  AMSU  temperature  profile  retrieval for rejection  test. 
13.  Repeat  steps 6-7 using R; and M3 to  obtain  the  final  surface  and  temperature 

profile  products,  using the first  pass  retrieved  water  vapor  and  ozone  parameters 
and  first  guess  temperature  profile  as  the  initial  guess. 

the  final  solution  and  set  an  appropriate flag. 
14  Apply  rejection  tests.  If  solution  is  not  accepted,  return  the  microwave  product  as 

5.4.2 General  Iterative  Least  Squares  Solution 

An  iterative  approach  is  used  to  linearize  the  radiative  transfer  equation  about  the n 
th 

iterative  parameters X? '. The iterative  retrieval  process  described  here  is  different 

from the  use of different  passes  in  the  determination of q. The values of Ri used  in  the 

iterative  retrieval  loop  are  held  fixed  in a given  pass. The n+l iterative  estimate of X! 

is  expanded  according  to 

th 

J J 
X $ + ~ = X Y +  F!~AA~=x:+ F ~ ~ A ~  

J j j = l   j = l  (5.4.1) 

where  the  columns of F represent a set of functions, X i  is  the  initial  guess,  and AJ? 

are  corresponding  coefficients  given by 

(5.4.2) 
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which  together  with x! determine  the solution. A solution  is found that attempts to 0 

minimize  the residuals weighted inversely with  respect to expected noise levels, 

for the channels used to determine A,. The residual for channel i is  defined by 

(5.4.3) 

where R i  is  the  reconstructed clear column radiance, Rr  is  the  radiance computed 

from the  nth iterative parameters,  and 0: is the brightness temperature computed from 

the n iteration  parameters. The n iteration  residual for channel i is attributed to errors 

in  the coefficients, SAY, and to noise effects, i.e., 

th th 

where Sij is an  element of the sensitivity matrix or Jacobian  given by 

(5.4.4) 

(5.4.5) 

and the noise factor b i  for a given case has two  parts: errors in  observed cloud- 

cleared radiances S6i,  which are affected  by instrumental noise  and  cloud clearing 

errors, and  computational  noise SOY. 

In simulations, a perfect  knowledge of physics is  assumed, i.e., all  the variables are 

known exactly, the exact noise free radiances are computed. Nevertheless, the 

transmittances  depend  on  the  variables to be  solved for. Therefore, computational noise 

exists. Computational  noise, arising from errors such as too low (high) an estimate of 

atmospheric  water  vapor,  produce  noise  that is correlated between channels. 

Instrumental noise  is  uncorrelated  from channel-to-channel but cloud-clearing errors are 

correlated from channel-to-channel. Each retrieval step uses  an  appropriate noise 

covariance matrix 
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(5.4.6) 

where M is defined in Equation (5.2.30) and M is discussed later, with values 

which depend on the pass. Writing W as M" for simplicity. 

A general form of the solution to this problem is given by 

where  AAn  and AOnare column vectors of the updates to the coefficients and of the 

residuals, respectively, and Hn is a stabilizing or damping matrix. 

Hanel et al. (1 992) and Rodgers (1 976) have reviewed several methods of 

constraining the ill-conditioned inverse problem. In the minimum variance approach 

(Rodgers, 1976), H is taken to be the inverse of the a priori error covariance. If the 

statistics of both  the measurement and a priori are Gaussian, the maximum likelihood 

solution is obtained. If the a priori covariance is taken to be H = yI , the maximum 

entropy solution is obtained. Other forms of H include the first or second derivative 

formulations (Twomey, 1963) that force a smoothness constraint on the solution. The 

solution can also be constrained by the relaxation method (Chahine, 1968) and  by the 

Backus and Gilbert (1970) method. 

The  minimum variance and  maximum likelihood solutions are often considered to be 

"optimal." However, if the a priori error covariance is not known or estimated 

incorrectly, the solution is sub-optimal. If the a priori errors are underestimated, the 

solution is overconstrained. Potentially, this creates biases in the retrievals. The biases 

mask small trends in the retrieved data that scientifically important. The approach 

described here attempts to keep the effects of instrument noise at a tolerable level without 

assumptions regarding the a priori data error covariance. 
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5.4.3 Transformation of Variables 

As a  consequence of  stabilizing  the  potentially  ill-conditioned  solution, the addition 

of H also has the effect of damping  the  information  content  (reducing AA for all  modes). 

The variables  are  transformed to apply  a  constraint  such  that  the  well-determined 

components of the  variables  are  solved  for  without  appreciable  damping.  If  a  different 

set of functions  are  chosen  which  are linear combinations of  original  functions,  i.e., 

G = F U  (5.4.8) 

where  U is a  unitary  transformation ( UU' = l), and  expand the solution  in  the  same 

way  as in Eq. 5.4.1  with  unknowns On, this  obtains  the  matrix form 

xn+l = xn + GAB" = x" + FUAB" = xn + FAA" (5.4.9) 

The objective is  to find  a  transformation  matrix U with  desirable  properties. In 

the  new  basis set, the  transformed  Jacobian is given  by 

(5.4.10) 

The constrained solution, as  given  by  Eq.  5.4.7,  in terms of this new set of functions 

is given  by 

(5.4.1  1) 

The term 6 0  is an iterative background  correction  term  that is zero in the first n-1 

iteration  (it is discussed  further  below).  U" is selected  such  that 

T'" W" T" = U' S' W SU  is diagonal  with  real  non-negative  eigenvalues ?Ln j . The 

inverse of each  eigenvalue is the  variance in  that  eigenmode. The total variance is the 

trace of the (S'WS)" or, equivalently,  the  trace of (U'S'WSU)-l. The unconstrained 

solution (H=O), with  no  background  correction (60"" = 0) , is then  given  by 
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ABn(0) J = (A!)-' ET;  Wk,i A@: = (hn)T1 Eijn A@ 
k,i J (5.4.12) 

where my is  the  vector corresponding to the jth row  of T'W. In general, the ill- 

conditioned cases arise from those components of G having  low information content and 

small eigenvalues (high  variance), indicating that those components are not  well 

determined  from  the observations alone and  need damping. Components with large 

eigenvalues are quite well determined and  require little or no damping to achieve a stable 

solution. If H is  chosen to be  diagonal  with  values Ah, the constrained solution  with  no 

background correction term  is  given by 

The coefficients AB7 (Ah:) are damped  from  the unconstrained coefficients 

(5.4.13) 

(5.4.14) 

where Qj can  be  thought  of as a filter or damping function. This formulation is  the 

same  as  the  maximum  entropy solution, applied  in  transformed space, if  Ah is set  equal 

to a constant. However,  instead of using a single constant for every Ah:, a different 

value is computed for each eigenfunction. For  well-determined eigenmodes, Ah is set 

equal to 0, giving  no  weight to the a priori. For  modes  that are not  well determined by 

the measurements, Ah is determined in such a way  as to limit the  propagation of 

instrument  noise to a pre-specified amount. The  determination of Ah! is discussed in 

detail  in  the  next section. 
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5.4.4 Application of a  Constraint 

The  residual  can  be  thought of  as having both a signal  and a noise component, 

1.e., 

- 
The  component of ABj that arises from the propagation of channel noise, Oi, is 

given by 

6Bn J ( X : )  = (hy + Ah:)-’ [T’” W] 6 (5.4.16) 

A statistical estimate of  8Bn  over  an ensemble of profiles can  be  obtained by 
J 

(5.4.17) 

because 66’ = M = W-l. This formulation of 6 i  is  similar to that  given by 

Rodgers (1990). If Ah: were zero, 6Bn becomes large if 1; is small. Ah; is  selected 

such that  6Bn is less  than  or  equal to a threshold value. If 6Bn is  allowed  to  be no more 

J 

J J 

hy2 - 6BMm h 
than 6BMAX, then Ahj is  set to zero if h j  2 6BzAx and Ahj = 

6BMAX 

otherwise. For example, if 6BMAx = 0.5, Ahj = 0 for hj  2 4 ,  and  if 8BMAx = 1 ,  Ahj 

= 0 for hj 2 I ,  corresponding to less damping. Constraints are  only applied to those 

eigenfunctions with  lower  information content than  the critical value corresponding to 

8BMAx. The value of 6BMAx has  been determined empirically for each type of 

retrieval. The  AMSU  temperature  retrieval step behaves best  with ABMAX = 1 .O , the 

AIRS surface temperature  retrieval step with a value of ABMAX = 0.35, the  AIRS 
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temperature  and moisture profile  retrieval steps with AB,,, = 1.2 and 1.0, 

respectively, and  the ozone profile  retrieval  with ABMrn = 4 .  The computation of  all 

matrix elements shown  above,  including h and Ah, is done in each iteration. 

5.4.5 Formulation of the  background  term 

The need for an iterative process arises because the radiative transfer equation is not 

linear. In  every iteration, O!, S", U" and h" are each recomputed. If the solutions were 

completely linear, and  no  damping is applied  then 

AO"+'(O) E A@ - sn un AB"(O) 

and AB"" (0) is zero because AB"(0) already  minimizes the residuals. 

Eq. 5.4.18 is not exact, because  both On+l(0) is  not  given exactly by 

0" + S"U"AB", and AB? f AB3 (0). As a result of applying AB: rather  than AE3)(0), 

which minimizes the  radiance residuals 

A@"+' =AOn+l (0 )+S  U " 1  ABn(0)-ABn]=A0n+1(O)+60n (5.4.19) 

In Eq. 5.4.19, A0"+'(0) represents the  portion of A@"+' that  is due to effects of 

non-linearity  on  the solution, while 60" represents the residual  portion of A@"+' due to 

the effects of damping  in  iteration n. The second term  is zero for undamped  modes  and 

increases  in significance with increased damping. This term  is also zero for all modes in 

the first iteration. It is desirable to include the effects of non-linearity  in  the iterative 

procedure  used  in  the  determination of AB". Therefore, the background term to be  used 

in  Eq. (5.4.1 1)  is  given  by 

60" = s" u" 

and  we solve for 

[AB" (0) - AB"] 
AB?+' according to 
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(5.4.20) 

where  is  the  value of  ABj which  applied  in  iteration  n. Inclusion of the 

background term in Eq. (5.4.20) ensures second order convergence along the lines 

discussed by Rodgers (1976) with  regard to treatment of the a priori term. 

5.4.6 Convergence  Criteria 

Solving Eq. 5.4.20 finds solutions to  the  radiative transfer equations which  minimize 

weighted  residuals of observed  and computed brightness temperatures, corrected for the 

background  term. To test convergence of the solution, the  weighted residual is  monitored 

1 / 2  
R = r (A@ - 6@f V’V (A@ - &@)I 

L J 
(5.4.21) 

where  the  weight  matrix V accounts for noise effects on  the channel residuals, as 

well as the  relative  information content of  the channels with  regard to the  variables  being 

solved for. For example, if a channel (or linear combination of channels) carries little 

information content in terms of signal-to-noise, it is  given little weight  in  the estimation 

of  the  residual  in Eq. (5.4.21). An appropriate choice of V, expressing the information 

content of the channels is 

V = (kj + Ahj)-l (T’ W) (5.4.22) 

in which case we obtain 

R = [AB’ AB]”2 (5.4.23) 

As  shown  in Eq (5.4.23), a reasonable way to determine if the solution has 

converged, in terms of weighted residuals, is to see if the  solution converges in terms of 

the iterative changes in  the solution itself. Initially, A B j  = 0 if @! < 0.05, that is, 
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coefficients of  very heavily  damped components with little information content are given 

no  weight.  The solution is  said to have converged when  the RMS value of ABS is less 

than 10% of the  RMS  value  of 6B" for all components not  set equal to zero. The 

iterative procedure  is also terminated if the RMS value of AB1 is not less than 75% of 

AB7-l for the  non-zero components. This indicates the  solution is not converging 

rapidly  enough  and is responding  primarily to unmodeled noise. The iterative procedure, 

which  usually converges in 3 iterations, is carried out analogously for all retrieval steps. 

5.4.7 The  retrieval  noise  covariance  matrix 

The retrieval  noise covariance matrix M used  in Eq. (5.4.1 1) (writing W = M-' for 

simplicity) is given  by a sum of two  terms 

(5.4.24) 

where M represents the error covariance in  the reconstructed cloud-cleared 

radiances  and M represents the error covariance in  the  radiances computed from the 

estimated profile, as a result of errors in parameters assumed  known (being held fixed) in 

a retrieval  step. M is given  in  Equation (5.2.35). 

The computational noise covariance matrix M is designed to account for errors in 

the computed cloud-cleared  radiance, Ry , resulting from errors in the geophysical 

parameters  used in the  retrieval step. It  is  assumed  that  these errors arise primarily from 

errors in  variables Xj, assumed to be  known  and  held fixed in the  retrieval step. M is 

modeled according to 

and 
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(5.4.26) 

JR. where 2 represents  the derivative of R r  with respect to parameter Xj and 6 x 7  is 

the estimated  uncertainty in parameter Xj in  iteration n. The parameters  used for Xj in 
modeling M represent uncertainties in surface skin temperature, surface emissivity and 
surface reflectance,  as  well shifts in  the  temperature profile, and multiplication of the 

axj 

aRi water  vapor  and  ozone profiles by functions of height. The derivatives - 
dXj 

are 

computed empirically. The term 0.1 in Eq. (5.4.25) is taken to represent additional 
unmodeled errors. Appropriate functions 6Xn(P) are computed for each pass m in 
manner to be  described below. 

a 

5.4.8 Variable  and  Channel  Selection 

5.4.8.1 Surface Parameter Retrieval 

Channel  radiances  depend  on  several  unknown surface parameters: the surface skin 

temperature ( Ts); the  spectral emissivity, E(v), and bi-directional reflectance p(v); and 

the microwave  spectral emissivity ( E ~ ) .  The retrieval  uses 88 infrared window channels 

and 6 microwave  window channels. Inclusion of the  microwave  window channels 

stabilizes the surface parameter  retrieval  and also provides one piece of information about 

the  microwave  spectral emissivity. 

In  the surface parameter retrieval, w infrared window channels are selected from 

both long- and short-wave infrared  window regions generally  avoiding  even  weak 

absorption  lines.  For  window channels, the transmittance at  the surface, ~ ( p , )  , is 

generally close to unity. Although the opacity of infrared  window channels is small, 

there is  absorption  and emission due to the  water  vapor continuum and the nitrogen 

continuum, both  absorbing  primarily in the lowest portions of the atmosphere. Therefore, 

the radiance  in  window  regions  depends  not  only  on T,, E(v), and p'(v), but also on  the 

temperature  and  moisture in the  boundary layer. The radiances of  window channels do 

not  depend  appreciably  on  temperature  and moisture above  the  boundary layer. To 

account for the  additional dependencies in the surface parameter retrieval, two additional 

variables are solved for by scaling the  total precipitable water ( A h  W) and shifting the 
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air  temperature ( ATAIR). A few channels centered on  weak  water  vapor  absorption lines 

are  included to help  account for these additional variables  that are subsequently modified 

in  the  temperature  and  moisture retrievals. These weak  water  vapor lines are  in  the 3.7 

pm window  and are sensitive to water vapor absorption as well  as  reflected solar 

radiation. The reflected solar radiation causes the surface to appear  hotter  than  in  other 

window regions not affected by reflected solar radiation. Therefore, in  the  short 

wavelength  window,  the contrast between the radiance leaving  the surface and  that 

emitted by the  boundary  layer is enhanced. This effect, coupled with  the increased path 

length of the solar radiation,  makes channels on  weak  water  vapor lines in this window 

very sensitive to water  vapor  in  the  boundary layer. Several of the channels in  the 

surface parameter  retrieval  are also used later in  the moisture profile retrieval. Currently, 

no  attempt is made to shift  the  temperature profile in  any  pass because the  input 

temperature profile agrees with  the AMSU radiances and is assumed to be accurate 

enough. The water  vapor  profile is scaled  in  the second pass surface parameter  retrieval 

because a water  vapor  profile is retrieved  using AIRS infrared channels in the first pass. 

When scaling the  water  vapor, profile, a total of fourteen variables are  solved for in 

the surface parameter retrieval for daytime cases (eleven for nighttime cases). The 

perturbation functions include a perturbation to T, , a perturbation to each of 8 infrared 

spectral  emissivity functions, 3 spectral bi-directional reflectance functions, and a scaling 

of the  water  vapor profile, and a piece of information about the  microwave  spectral 

emissivity. The  values of the perturbations are selected to give comparable values of the 

S matrix for a typical case. If all  perturbation functions Fj were  half  as large, Sij would 

be  half  as large for each  mode,  and  the solution vector AAj would  be  twice  as large. The 

perturbations  are large enough to produce significant S matrix elements, but  not so large 

as to produce  an  appreciable  non-linear response. 

The  Jacobian  or  sensitivity  matrix S" is computed every iteration. The partial 

derivative of channel  radiance  with  respect to the coefficients of each of the above 

functions are computed empirically  as follows: (1) Compute the ith channel  radiance 

using  the n iteration parameters (i.e., Tf , ~ " ( v ) ,  qn(P), etc.) (2) Compute  the i" 
th 

118 



AIRS  Level 2 Algorithm  Theoretical  Basis  Document  Version 2.1 

channel transmittance  (if necessary) and  radiance  using  the n iteration parameters but 

setting the coefficient ( M j )  of perturbation function Fj to unity. (3) The sensitivity Sij, 

related to the  change  in channel radiance  per  unit change in coefficient AAj, is given by 

the difference in radiances computed in steps (1) and (2), divided  by (dB/dT)@:. The 

sensitivity  or  partial derivative of radiance with  respect to surface temperature, spectral 

emissivity, and  surface bi-directional reflectance can  be computed theoretically by 

differentiating the  clear  column  radiative transfer equation because  the transmittance 

functions do not  depend  on these parameters. 

th 

After  the  sensitivity  matrix  is computed, the  inversion procedure described earlier 

proceeds.  In  the surface temperature retrieval, modeled channel computational noise is 

not  included  in  the noise covariance matrix,  but includes only  an estimate of 0.1K for 

unmodeled computational noise from other sources in Equation (5.4.22). The retrieved 

values of  T, , E(v), and p(v) are held constant and used  in  the subsequent iterative steps 

for temperature, moisture, and ozone profile retrievals. The shifted  water  vapor profile 

are  held fixed in the transmittance and radiative transfer calculations for the temperature 

profile  retrieval  and  used  as  the first guess  in  the  water  vapor retrieval. 

5.4.8.2 Temperature Profile Retrieval 

The temperature  profile  retrieval  problem  is  set up and  solved  in a manner 

completely  analogous to the surface parameter retrieval. The solution for the retrieved 

temperature  profile is written  in  the form 

J 
T"(P.o) = To(Pp) + C F ,  (Pf) AJ = To(Pf) +FA 

j=l  (5.4.27) 

where .! ranges over the  number of levels used to compute channel transmittances 

and radiances, and j ranges over the number of functions that  are solved for, currently set 

to 14.  The functions in  the surface parameter retrieval are taken  as discrete changes in 

different surface or  atmospheric parameters. Following  the  approach of the surface 

parameter  retrieval,  the functions Fj are selected as  localized functions of pressure, 
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corresponding to changes in temperature primarily in a layer from Pj to Pj-l. Use of 

localized functions is convenient for computing the S matrix  and makes the problem 

more  nearly linear. The methodology discussed previously  does  not  require  the functions 

to be orthogonal. In order for the solution to be continuous, the functions chosen are 

trapezoids,  with a value of 0.5K between  Pj  and  PjV1  and falling linearly in log P to OK 

at Pj+l and Pj-2. The highest and lowest functions in  the atmosphere are special cases, 

with  values of  1K  at the upper or lower limit of the  atmosphere (1 mb or the surface), 

0.5K  at  the  adjacent pressure, and followed by OK at  the  next pressure level. 

The Jacobian  matrix is computed exactly as in  the surface parameter retrieval. In 

any iteration, transmittances and radiances are computed for the  temperature sounding 

channels  using  T" (P) and T"(P) + Fj(P), where Fj(P) is  one of the trapezoids, and  the 

Jacobian is obtained empirically according to 

T"(P) + Fj(P))- Ri(T"(P))](-) dB -' . 
dT ei (5.4.28) 

It  can  be  shown  that for an opaque temperature sounding channel, a shift of the entire 

atmospheric  temperature profile by  1K  will cause roughly a 1K change in brightness 

temperature  (Susskind et al., 1984). Moreover, a localized change of  1K  in  an 

atmospheric  layer containing the non-zero  part of the  channel's weighting function 

likewise  result in a 1 K change in brightness temperature. This brightness temperature 

change  decreases  as  the layer becomes thinner than  the  weighting function. To insure 

sensitivity of  at least one sounding channel to changes in  the layer (or trapezoid) 

temperatures,  layers are selected to be  sufficiently coarse as to have an element of the S 

' matrix of  at least 0.2 for the layer. While  the Jacobian is profile dependent, the layer 

structure  used to define the trapezoid functions is held fixed for all soundings. They  are 

selected so as to be  neither too thin, resulting  in  lack of sensitivity, nor too coarse, 

resulting  in  lack of resolution. The pressure boundaries for the 14 functions used are 

shown  in Table 5.4.2. According to Equation  (5.4.27),  the  only structure in the solution 

with finer spacing  than these boundary levels must come from the initial guess. In fact, 

the  transforming  and damping functions, as discussed earlier, further decrease the  ability 
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of  the solution to discern fine structure not contained in  the  information  content  matrix 

S'WS. This damping is profile dependent. 

In  the  first  pass  temperature  profile retrieval, channels are selected which are 

relatively insensitive to  the  ozone  and water vapor distributions as these variables have 

not  been  solved for, except for an estimate of the  column  water  vapor  content obtained in 

the surface temperature  retrieval step. In addition, temperature-sounding channels are 

selected  between  absorption lines to optimize the channel weighting functions (Kaplan et 

al. 1977).  Along  the lines of Kaplan et al. (1 977) and outlined in Table 4.3.1 , the 

retrieval uses 96 channels  in  the  15 pm CO, band, including the  Q-branch  near 666 cm" 

to sound  the  mid to upper stratosphere; channels in  between CO, absorption lines and 

near  the 720 cm"  and 740 cm" Q-branches to sound  through  the  upper troposphere; and 

33 channels in  the CO, 4.3 pm band P and R branches, primarily  in  the  vicinity  near 2380 

cm", to sound  the  mid- to lower troposphere. The noisiest spectral  region  is  near  15 pm. 

For this reason,  many of the  15 pm channels represent  spectral intervals sampled  twice 

per channel width. This adds little information about the  vertical structure but increases 

signal-to-noise. There are  12  AMSU channels included (3-14 from Table 2.3) in  the 

temperature  profile  retrieval. 

Unlike  Kaplan et al. (1977), 7 temperature sounding channels are included, which  lie 

between  absorption lines in the  15 pm CO, band,  that are sensitive to the  mid-lower 

tropospheric  temperature profile. The inclusion of these channels does  not  appreciably 

affect  sounding  accuracy  under clear sky conditions but are significant under  cloudy 

daytime conditions. This somewhat compensates for the increase in effective noise levels 

of the 4.3 pm tropospheric  sounding channels during sunlight conditions. The  selection 

of these channels avoids  spectral  regions  near  water  vapor lines of appreciable strength. 

The channel radiances of the  mid-lower tropospheric temperature sounding 15 pm 

channels are still  affected by water  vapor due to the  wings of nearby  water  vapor lines as 

well  as  the  water  vapor  continuum.  As described previously, our sounding methodology 

involves two temperature  profile  retrieval steps, one (first pass) before the  water  vapor 

retrieval,  and  the  other  (final  pass) subsequent to it. In  the  final  pass, a number of 

additional  channels  in  the  water  vapor absorption band  are included which  produce sharp 
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temperature  weighting functions. Even  though the water  vapor retrieval has  been 

performed,  these channels are still treated as “noisy” in the channel noise covariance 

matrix to the  extent  that  the  predicted  uncertainty  in  water  vapor distribution produces 

uncertainty  in  the computed radiances. 

Errors in  the estimate of  the  water  vapor profile used to compute the radiances, 

produces errors in  the computed brightness temperature for a given channel, as  well  as 

correlated errors in  other temperature sounding channels sensitive to water  vapor 

absorption. These errors are  accounted for in  the noise covariance matrix M .  

The effect of errors in  the estimated water vapor profile on computed radiances,  as 

well  as  radiance errors due  to errors in  ozone profile and surface parameters, are  taken 

into account  in  the  computational  noise covariance matrix (Equations 5.4.25, 5.4.26).  The 

Temperature 
retrieval 

0.016 
0.975 
2.701 
5.878 
1 1 .oo 
18.58 
5 1.53 
89.52 
142.4 
190.3 
314.1 
478.0 
661.2 
827.4 

surface 

Moisture retrieval 

0.016 
170.1 
260.0 
300.0 
343.6 
407.5 
496.6 
596.3 
706.6 
857.8 

surface 

Ozone retrieval 

0.016 
20.92 
5 1.53 
71.54 
103 .O 
142.4 
300.0 

surface 

Table 5.4.2. Trapezoid or Layer Endpoints 

noise  due  to errors in the  ozone  profile  is computed analogously to that for water  vapor. 
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Incorporation of these terms into the noise covariance matrix  has the effect of 

making channels sensitive to water vapor absorption, ozone absorption  and/or  the surface 

temperature  appear noisier. It should be  noted  that in general, the mid-lower tropospheric 

sounding 15 pm channels will  be “noisier” for humid cases than for very  dry ones, where 

uncertainty  in  water  vapor  profile  will  have a smaller effect on the 15 pm radiances. 

Conversely, 4.3 pm channels are “noisier” during the  day  than  at night. 

The contributions to the noise covariance matrix due to errors in estimated total 

precipitable  water  and surface skin temperature are included for all  temperature  sounding 

channels. Neither is included  in  the  ground temperature retrieval because both  variables 

are being  solved for. The estimated error in surface temperature is included in  the  noise 

covariance matrix in the subsequent steps of  water vapor profile retrieval and  ozone 

profile retrieval, and  the estimated error in water  vapor profile is also included  in  the 

ozone  profile retrieval, but  not  in  the  water  vapor retrieval. 

The  retrieval  step  described above is done after the  AMSU temperature profile 

retrieval step has  been completed. That AMSU retrieval step is analogous, but  uses  only 

AMSU channels and stratospheric AIRS temperature sounding channels, and solves for 

one piece of information  about  the  microwave spectral emissivity as  well as coefficients 

of the 14 temperature perturbation functions. 

5.4.8.3 Water  Vapor Profile Retrieval 

Unlike  the surface parameter and temperature profile retrievals, the  water  vapor 

profile  retrieval  problem is highly non-linear. A change in  water  vapor abundance in a 

given  level affects the transmittance in  that layer as  well  as  the atmospheric emission  and 

absorption  at  all lower levels in a complex manner. Nevertheless, the problem is solved 

in a completely  analogous  manner.  In  the surface parameter retrieval, the entire water 

vapor  profile  (up to 50 mb)  is  multiplied by a constant unknown factor. Following this 

form, the  solution for the  retrieved moisture profile  is expressed as 
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where l ranges  over  the 64 levels used to compute transmittances and radiances, and 

j ranges  over J solution functions. The functions Fj(Pl) are expressed as trapezoids with 

a value of 0.05 in coarse atmospheric layers, in a manner analogous to that described 

above for the  temperature  profile retrieval. The endpoints of the 10 trapezoids used  in  the 

moisture  profile  retrieval  are  included  in Table 5.4.2. The highest trapezoid has a value 

of 0.05 at 170.1  mb  and  260  mb  and 0 at .016 mb  and 300 mb. The lowest function is 

comprised of two straight lines, with a value  at  the surface and 857.8 mb of 0.05, and a 

value of 0 at 706.6 mb. 

In the  moisture retrieval, we include channels between  absorption lines in  the  6.3 pm 

water  vapor  band  that are sensitive to humidity  throughout  the troposphere. These 

channels provide sharper weighting functions (more localized absorption) than centers of 

strong lines and make the  problem  more linear. In addition, some channels are used  on 

the  peaks of  the strongest absorption features in  the 6.7 pm band,  which  are sensitive to 

stratospheric water  vapor.  Channels  are also included on  and  off  weak  water vapor 

absorption lines in  both  the 11 pm and 8 pm windows, sensitive to the  water vapor 

continuum which  improves  the  sounding capability for lower tropospheric humidity. 

Channels  in  the  3.7 pm window  provide improved sensitivity to low  level moisture 

during  the day. The S matrix  is computed empirically exactly as in  the temperature 

profile retrieval. The parameters determined from the surface and temperature profile 

retrievals are  kept fixed in  the calculations. 

In constructing the  noise covariance matrix, terms for uncertainties in  ground 

temperature are included, as  in  the temperature profile retrieval, as  well  as a term shifting 

the entire temperature  profile,  as done in  the  noise covariance matrix  used  in the 

determination of q (Equation 5.2.15). 

5.4.8.4 Ozone Profile Retrieval 

The solution for the  ozone profile retrieval has the same form as  that for the moisture 

retrieval. The ozone retrieval  uses 7 trapezoid functions with  values of 0.05, as  in  the 

water  vapor retrieval. The end points of the trapezoids are included  in Table 5.4.2. The 

same steps outlined  in  the  previous  section are used to compute the Jacobian. It is critical 
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to solve for water  vapor  before  ozone  because ozone channels are sensitive to absorption 

by boundary  layer  water  vapor. There are 23 channels in  the 9.6 pm ozone band  selected 

for the ozone retrieval. Uncertainties in surface parameters, temperature profile, and 

water  vapor  profile  are  included  in  the ozone noise covariance matrix. 

5.4.8.5 Retrieval of Cloud Properties 

The observed  radiance for the ith channel, Ri , in a scene with j cloud types is given 

by 

(5.4.30) 

where aj is  the  fraction of the  scene  (in a nadir  view) covered by cloud type j, 

Ri,CLR is the  clear-column  radiance for channel i (i.e., the radiance emerging from the 

clear  portion of the scene), and Ri,CLD,j is the ith channel radiance emerging from the 

cloudy  portion of the  scene covered by cloud type j (Chahine, 1982). 

The computation of  Ri,CLD,j for a given scene is complex due to the  detailed 

spectral  absorption  and  reflection  properties of clouds, cloud morphology  within  the 

field-of-view, and  geometric  shadowing factors. Assuming plane parallel cloud 

formations and  nadir  viewing, Ri,CLD,j is expressed as 

where Ri  (pcj ) is  the  upwelling  radiance  at cloud top pressure pc , and ziC and 
j j 

&icj are respectively the transmissivity  and  emissivity of cloud type j at  channel 

frequency vi, B,  (Tcj ) is  the  Planck function evaluated at channel frequency vi and 

cloud top temperature Tcj , picj is  the  cloud bi-directional reflectance of solar radiation 
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incoming  at solar zenith angle eo and  outgoing  in  the direction of the satellite, zj(pcj  )is 

the  two  path  atmospheric transmittance from the  top of the atmosphere to the cloud top 

pressure  pc  and Hi is  the solar irradiance. In Eq. (5.4.32), the first term represents 

upwelling  radiation from below the cloud  that  passes  through  the cloud. The second term 

represents  radiation emitted by the cloud that is transmitted by the atmosphere to the 

satellite. The third  term represents that  portion of the  radiation absorbed and emitted by 

the  atmosphere  above  the cloud, and the fourth term represents solar radiation reflected 

by the  cloud  in  the  direction of the satellite. This neglects a small term due to 

downwelling  thermal  radiation reflected off  the cloud in  the direction of the satellite. 

j '  

If there  is  only  one cloud type  in  the scene, Ri, CLD, 1 is expressed as 

When  retrieving cloud properties, the channels used are limited to those  at 

frequencies  less  than 1250 cm", for which  the last term  in  equation  (5.4.32)  is  not 

significant. Making  the  approximation  that z- = (1 - E .  ) ,  then equations (5.4.30 and 

5.4.32)  combine  to  give 

IC1  'C1 

(5.4.33) 

where Ri,CLD (p C1 ) is  the  radiance form a black cloud (zit = 0, q C  = 1) at  cloud 

top  pressure p It is apparent  that  the term a1 qcl  appears only  as a product  in 

equation (5.4.33). Therefore a and siC are not determined independently, but  only  as a 

product,  which  can  be  thought of as the radiatively effective cloud fraction that  may  be a 

function of frequency. To the extent that &iC is a function of frequency, the  frequency 

dependent  term a 1  E.  is expressed as ( a e , ~ ) ~  F1(v)  where (a&,.)1 is a representative 

c1. 

'Cl 
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value of  the effective cloud fraction a 1  E -  at a given  frequency V , and F1 (v) expresses 
lC1 

the  frequency dependence of - ECV . 
ECV 

In the case of two cloud types, assuming z- = (1 - E- ), then  the  radiances are 
lC2 'C2 

written  as 

where mi, 1 and m i ,  2 are the radiatively effective cloud fractions for the clouds at 

pcl  and pc2. For  the  higher cloud at pcl , E i , l  = a 1  &icl as before. On the  other 

hand, for the lower cloud 

- 
a E i ,  2 = ~ iC2  [a2  + (1 - Eicl )ala12 1 (5.4.35) 

where a12 is  the  fraction of the area covered by cloud type 1 which  is  under- 

covered by cloud type 2. In equation (5.4.35), E -  multiplies the cloud fraction for 

layer 2 as  seen  from  above,  and  is comprised of two parts: a12 is  the  fraction of the 

scene covered only by clouds in layer 2, and (1 - E.  )ala12 is that  part of  the scene 

covered by clouds of both  type 1 and  type  2,  which  is  seen  through cloud type 1, with 

transmissivity (1 - E.  ). If either E- is independent of frequency or a12 is  the  same 

for all fields of view,  this situation corresponds to two cloud formations. In  the first case, 

the  radiances are equivalent to a well-defined, frequency independent  amount of each 

type of black cloud. In  the  second case, cloud type 1 has a constant spectral dependence 

in each field-of-view which combines properties of cloud  types 1 and 2. To the extent 

that (1 - E. ) is frequency dependent, and a12 depends on field-of-view, this situation 

actually contains three  cloud formations, because the  spectral dependence of radiances in 

areas covered by clouds at  both levels is different from that of clouds at either of the  two 

levels,  in a manner  that  is field-of-view dependent. The significance of  this  with  regard 

to determination of cloud-cleared radiances remains to be tested. With  regard to 

'C2 

'Cl 

lC 1 lC1 

'Cl 
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determination of cloud  parameters, the spectral dependence of E i ,  2 contains the  product 

of two  spectrally  dependent terms E -  and &icl . To first order, iEi,2 = a& F2(v) 

but  care  must  be  taken  in interpreting F ~ ( v ) .  

'C2 c2 

Currently, cloud  parameter retrievals have been  attempted  using the AIRS  team 

simulations, which  contain two layers of clouds with constant known spectral emissivity 

(=0.9) with a12 equal  to zero for all fields-of-view. Observations in each of the nine 

fields of  view k=l,9 were  used to determine cloud parameters. The channel radiances 

Ri,k is expressed as 
- 

The cloud  parameter  retrieval is performed after all other parameters are  solved for, 

in  an exactly analogous  manner to that of all other retrieval steps. Given a surface skin 

temperature, surface spectral emissivity, and atmospheric temperature, moisture, and 

ozone profiles, R~,CLR and Ri (p . are readily computed. The  only unknowns in 

equation (5.4.36) are (iii)jk ( j  = 1, 2; k = 1, g), and pcl andpc2. Using Ri  k in the 9 

fields-of-view for the  15 pm and 8-12 pm channels used to determine q and to solve for 

these 20 variables.  The  noise covariance matrix N used to retrieve cloud parameters, 

which represents both  noise  in  the observations and uncertainties in  the computed values 

of Ri, CLR, is  taken to be identical to that  used to determine q (Eq. 5.2.15). 

B 
cJ 

Given  the n iteration  cloud parameters i E & ,  pCnl,  pCn2, define 
th 

where Ri,k is the ith channel  radiance  in field-of-view k (Eq. 5.4.36) and i?& is 

computed from the n" iteration parameters. This gives rise to the iterative equation 
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j = 1,2 
(5.4.38) 

where  the  terms  in  brackets are the appropriate Jacobians, computed empirically as 

are all  other Jacobians. Note  that if m j k  (for all k) and/or dRi/apc (for all  i) are small 
j 

for a given p , the  Jacobian for that  cloud top pressure is small  and  the  cloud top 

pressure  is contained primarily  in a heavily  damped  mode  and  is  not changed 

significantly from the  initial guess. In analysis of simulation data thus far, the  second 

cloud formation usually contains small amounts of  low clouds, and p is in general  not 

well  determined from the data. 

c j  

c2 

For  our retrievals, the first guess cloud top pressures are taken  as 350 mb  and 650 

mb,  and  the first guess effective cloud fractions taken  as 0.25 for each cloud type. The 

solution  is constrained such that p > 100 mb, pc2 I ps - 50 mb  where  ps is the 

surface air  pressure.  In  addition  aE1 k + m 2  k are constrained to be I 1.0. If  the 

second  cloud fraction is either set very  small  in  the first guess,  or  becomes  very  small  in 

the retrieval, no  useful  information  about  the  second cloud top pressure is determined. 

c1 - 

5.4.8.6 Rejection  Criteria 

A number of tests are made to test  whether  the  retrieval  is rejected. The major cause 

of rejection is difficulty  in dealing with  the effects of clouds on  the  AIRS radiances. 

5.4.8.6.1 Assessment of the  Cloud-Clearing  Fit. 

Equations (5.2.30), (5.2.29),  and  (5.2.25)  give  the  solution for the  vectors ij and q 

and  the  resultant clear column  radiances Ri  . If a successful  solution is produced,  the 
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ensemble R i  for the cloud-clearing channels should match  the incoming estimates of 

cloud-cleared radiances Ri,CLR to a reasonable degree. A poor  match is indicative of 

either a particularly  poor first guess or problems in  handling the effects of clouds on  the 

radiances. The  weighted  residuals of  the clear-column radiances are computed, as  used 

in  the  computation of q in brightness temperature units 

AF= 

I 2  

(5.4.39) 

and  reject  the solution if AF computed when generating r\l is greater than 1.75K. 

5.4.8.6.2 DifJicult Cloud  Cases. 

Cases with extensive cloud cover and  low contrast are particularly difficult to 

analyze. The solution is rejected if  the  sum of the final retrieved cloud fractions for all 

cloud layers is greater than 80% or the  total cloud fraction is greater than  65%  and  the 

noise  amplification factor (see Equation 5.2.31) is greater than  2.5. 

5.4.8.6.3  Large  Residuals in Second Pass  Retrievals. 

The  general iterative solution is terminated  when either the  residual Rn (Equation 

5.4.23) is less than  10% of the RSS of the predicted noise for each  mode 6Bf, (Equation 

5.4.17) or Rn is  more  than  75% of R . Slow convergence indicates a poor solution. 

The  solution  is  rejected if the  converged value of R is greater than  1.75 times the  root- 

sum-square of 6Bf in either the surface parameter retrieval or the temperature profile 

retrieval  in  the  second  pass.  Poor convergence generally indicates problems  with the 

clear  column  radiances Ri ^ 3  . 

n-1 
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5.4.8.6.4 Inconsistency of Test “Microwave-Only”  and  Combined 
Infrared/Microwave Retrievals. 

Under  some conditions, the cloud-cleared radiances Ri3 is poor  but  all convergence 

tests are passed. Nevertheless, the test  microwave-only  retrieval produces low  level 

temperatures  which  differ  significantly  from those of the second pass retrieval. This 

generally indicates poor cloud-cleared radiances. The solution is rejected if the root- 

mean-square  differences  between  the  temperature in the lowest 3 km of  the  test 

microwave-only  retrieval differs from that of the second  pass retrieval by more  than 2K. 
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5.5 Tuning 

To be  useful for numerical forecasts, AIRS data must  be consistent with data from 

other sources such  as  radiosondes. Errors in both  the  AIRS data and  the  other data 

contribute to systematic differences between different data sets. These are removed by a 

statistical adjustment  procedure. There are other errors in  the  AIRS data that can be 

recognized  in  the data and  removed  before  the tuning step. A linear shift  in  the detector 

array  is one example. For tuning, it  is assumed that these corrections have  been made. It 

is also assumed  that there exist matched pairs of radiance vectors, one calculated from 

some  measure of truth  and  one  observed  by AIRS. The problem  is to make  an 

adjustment to remove  the systematic differences between  the  two sets of data. 

Before proceeding,  it is useful to discuss the procedures used to calculate radiances. 

Although  the calculation of radiances using  the procedures of Section 4 is  easy  once  the 

atmospheric state is completely specified, radiosondes and  other sources of information 

often provide an incomplete  description of the atmospheric state. For example, a 

radiosonde specifies the  temperature  and water vapor  in  the lower part of the atmosphere. 

The  radiances depend on  these conditions as well  as the conditions in  upper atmosphere 

and the surface skin  temperature. Estimates of these conditions can  be  obtained  from  the 

satellite retrieval. Values of other gases such as ozone can be  obtained  from  the  retrieval 

as  well.  When this is done, the  adjustment  will preserve the original calculated  values for 

the  upper atmosphere where little independent knowledge of the  atmosphere  is available, 

but  it  will  adjust  those  variables  in  the lower atmosphere where  an  independent  measure 

of truth  is available. Further this is  done  in a way  that minimizes the  systematic 

differences between  the  calculated  value  and  the measure of truth. 

5.5.1  Approach 

To remove  the  systematic differences between  the calculated and  observed radiances, 

one can be  used to predict  the other. It  is common practice to use  the  measured radiances 

to predict  adjustments to the calculated values because the data are frequently  used  in an 

iterative retrieval  procedure  in  which  the radiances are calculated for a series of 

successive iterations. By using  the  measured values, the  adjustment  needs to be done 
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only once. If the calculated values are used  as predictors, a new adjustment would  have 

to be calculated for the new estimate at  each iteration. We  use a constrained regression 

for the adjustment. Using  standard  regression for the adjustment has some potential 

problems. One  is  that  the  regression  is  probably  numerically unstable due to the large 

number of  highly correlated predictors. A second is  that unconstrained regression 

coefficients are often  physically unrealistic. For example, channels with  weighting 

functions that  peak  high  in  the  atmosphere  often  become  major predictors for channels 

with  weighting functions which  peak  near the surface. It is reasonable to expect that  the 

regression coefficients be  slight perturbations to the  identity matrix. That is, the 

calculated radiance for a given channel depends on  the  measured radiance for  that 

channel, with a coefficient that  is  nearly unity, while  the dependence on  other channels is 

small. This is  the form one expects for a slight error in  the  weighting function peak 

height.  The  desired solution is  given by  the shrinkage operator (Oman et al., 1982). The 

particular  derivation  is found in  the  appendix of Crone et al. (1 996). The shrinkage 

estimator, C, is obtained by finding the C that minimizes the trace of [(C-C,)' (C-C,)] 

subject to the constraint that  the trace of [( k -C X)(  k -C X)'] is held constant and  where 

C, is an initial estimate for regression coefficients, k is the  value being predicted  and 

Xdenotes the predictors. In our case, k is  the adjustment, and X is the  vector of 

measured radiances. The shrinkage estimator can  be  obtained by setting the derivative 
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2(C - CO) + y(-2YX + 2 cxx ) = 0 "T - 'T (5.5.1) 

which leads to 

c, = (YX + yCo)(XX + yI)-l "T - 'T (5.5.2) 

For current instruments with  tens of channels, this form of the equation is adequate. 

For a high  spectral  resolution  instrument like AIRS,  the  number of channels increases by 

a factor of about 100. Not  only  does  the large number  of channels increase the 

computations, the larger number,  coupled  with  the fact that more channels are similar, 

increases  the  numerical instability. The retrievals are being done with linear 

transformations such  as eigenvectors or  "super  channels",  which are averages of channels 

that are highly correlated with each other, or with a subset of the channels. Many groups 

of channels contain no  unique information, but  can  be averaged to reduce  the noise. We 

used eigenvector regression to suppress noise.  In this procedure, only  the eigenvectors 

associated  with  the largest eigenvalues are  preserved.  We  note that, while  in general, an 

equation of  the form 

c = (k - c,X)x'(xx')-' (5.5.3) 

produces  regression coefficients that  are  equal to those given  by standard least 

squares regression, this is not the case if the  small eigenvalues of  XX'are suppressed. 

We  use eigenvector regression  and  use  only  the eigenvectors associated with  the larger 

eigenvectors. Then, because we expect the  calculated  value for a channel to be  the 

measured  value  with a small correction, we  set C, equal to  the  identity matrix, I, to give 

which leads to the  solution 

E=(I+C)X 

(5.5.4) 

(5.5.5) 

where the values of C are  small  because of the eigenvector constraint. This is the 

form  that  we  want.  It  produces a set of regression coefficients that give nearly  the  same 

reduction  in  variance  on  the  dependent  set  as  is  given  by  standard regression, but that 
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have  the desirable physical  property  that  the calculated value for each channel is equal to 

the  measured  value plus small corrections. Details of the procedures for doing 

constrained regressions  have  been  documented  in a series of papers (McMillin et al. 

1989, Crone et al. 1996, Uddstrom  and McMillin 1994a,  Uddstrom and McMillin 

1994b). In  the equations above,  we  have  been  using variables that have the  mean 

subtracted. When  the  mean  is included, equation (5.2.5) becomes 

Y=[Y-(I+C)X]+(I+C)X (5.5.6) 

We also note  that there may  be occasions where  it  is desirable to have a correction 

that depends on predictors other  than radiances such  as latitude. This can be done by 

adding columns to X so that X has  more columns than k and  the  identity matrix has 

corresponding columns of zeroes added. We add this  capability because, while  one 

would expect the state of the atmosphere to be  defined by the radiances, some current 

adjustment  approaches use other predictors and  it  is possible that  some other predictors 

that  might lead to a more accurate adjustment. This is  an aspect that can’t be fully 

determined  until launch. The initial system, while it allows for additional predictors to be 

added, will  not  use  this feature. 
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6 UNCERTAINTY  ESTIMATES 

Error estimates of AIRS products,  on a retrieval-by-retrieval basis, are an important 

part of the dataset. In deriving the first thermal  and  moisture  product  (section 5.3) an 

error estimate is  derived  through  the  regression  and  minimum variance physical  retrieval 

using  the  observational  noise covariance matrix  (equation 5.3.33) and estimated as 

thermal  and  moisture covariance matrix (5.3.35). This chapter deals  with  the final 

product  (section 5.4) error estimates. This involves estimating likely sources of error and 

propagating  them  through  the  retrieval  process. These errors are also important in the 

construction of the cloud-clearing noise covariance matrix M (equation 5.2.15) and  the 

retrieval covariance matrix M (equations 5.4.23, 5.4.24). In our discussion we 

distinguish  between error estimates of cloud-cleared radiances, discussed in  section  5.2 

and those of other  "geophysical"  products discussed here. 

Equations (5.2.15)  and (5.4.25) contain terms such  as 6T(P)", indicative of expected 

errors in  retrieved  parameters. These errors are case dependent and can be estimated by 

propagating  expected errors through  the  retrieval system. At  any step in  the iterative 

process,  the estimate of a parameter,  such as T(P)" , is  given by 

L 

k = l  
T(P$ = T"(P)~ + F ~ ~ A ; :  = TO(P)~ + ( F U B " ) ~ , ~ .  

There are three contributions to the expected error 6T(P)j. The first contribution 

comes from  the  null space error, arising from the error of the first guess in  the  space 

outside that of the L eigenfunctions used to expand the solution. The second component 

arises from errors in  the coefficients B". The last contribution arises from the  damping 

of the  solution in which (1 - (D) of  the first guess (or previous iteration) is believed for 

each eigenfunction G. 

The expected error in  parameter Xn , 6x7, can  be expressed in terms of errors in 
j 

the  expansion coefficients A according  to 
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where 6XN is the null space error and 6An is the error in  the coefficients An used 
J 

to represent Xn . These arise from both errors in  the B coefficients and errors in  the 

damped  portion of the first guess. In  every step in the iterative retrieval process, we 

begin  with parameters X having  an  uncertainty 6Xj . The uncertainty of the first n-1 n - 1  

guess is specified based  on expected errors, as is the  null space error. If we  knew the 

signed errors of state X - 6A" - could  be  solved for exactly according to 
j '  

The magnitude of errors in a given state are only estimates. It is preferable to use an 

analogous form  which averages the estimated errors of X over pressure layers in  the 

trapezoid functions F to approximate 6AE- 

where Fmax, k is the largest value of Fjk in function k . 

In a given iteration, we  can  now express 6AF according to 

where - @' represents the  predicted error in 6B: due to propagation of noise  and 

the  second  term represents the  damped error of the previous iteration profile, with 6A"" 
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coming from Equation  (6.4). Given 6 A i  from Equation (6.5), the corresponding profile 

errors for use  in Equations (5.2.15), (5.4.25), and (5.4.26) are computed according to 

Equation (6.2). 

For moisture and ozone profile, the form of the  expansion  is slightly different (see 

Equation 5.4.29) and we write 

or 

Equation (5.4.44) is case dependent through  the parameters @! and he which 

depend  on the S matrix, and  more  significantly on the M matrix. M contains 

contributions from clouds, M ,  and parameter uncertainty M .  The uncertainties 

determined from Equations (6.3) and  (6.7)  in  turn are used  in  the computation of M 

(Equation 5.4.25) and N (Equation 5.2.15). The  null space error is  taken  as 0.5K at  all 

levels  and the first guess error is  modeled  as a function of first guess type. The null  space 

error in  percent is taken  as  5% for water  vapor  and ozone respectively. 
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7 QUALITY  ASSESSMENT 

Separate plans have  been drafted (to be  released  in  early 2000) to describe the AIRS 

implementation of quality  assessment  (QA)  processing for each data level. This section 

gives a brief  overview  of  these  plans for the  level 2 processing. There is  often confusion 

when first encountering the concept of quality  assessment  and  how this is distinguished 

from quality control, data validation, diagnostics, and  retrieved  parameter uncertainties. 

Appropriately  enough, each EOS instrument  team  uses  quality assessment processing 

quite differently. The AIRS  implementation emphasizes diagnostics more  than  the  other 

elements. 

AIRS  quality  assessment  processing  can  be  divided into two types. The first type of 

quality  assessment  is  performed  within  the  product  generation software. In  the course of 

data product generation, quality assessment parameters are calculated and quality 

assessment results are reported. Because this quality  assessment  information is 

calculated  and collected without user intervention, it  is  referred to as automatic quality 

assessment. During automatic  quality assessment, a variety of summary statistics are 

calculated  which  provide  insight into product quality. If these summary statistics indicate 

a probable  quality  problem, a message  is  generated  in  the log, the product is flagged as 

bad,  and  quality  assessment  personnel are notified  that manual quality assessment is 

required for that  product. 

Manual  quality  assessment is the  second  type of AIRS  quality assessment and is 

performed by a human operator. If  automatic  quality  assessment indicates that a product 

is  bad,  the  DAAC first checks to see if there  was  some  type of DAAC operational 

problem (e.g., input files were  not  staged  and  were  unavailable during processing). If so, 

the  problem  is corrected and  the product is re-generated. If no operational problem  is 

found, manual  quality  assessment is performed  at  the  AIRS Team Leader Science 

Computing  Facility  (TLSCF) to determine the problem  and  whether  it  can  be corrected. 

During  manual  quality  assessment  the  archived logs may  be  used  as  ancillary 

information,  along  with other metadata. Identification and correction activities conducted 

within  investigative  quality  assessment  are also recorded for future reference. Once these 
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activities have  been completed, the data product  in  question is marked  as either good  or 

bad. 

There is  also a second form of manual  quality assessment at  the TLSCF, known  as 

routine quality assessment. The normal data production  stream  will  be  sampled  on a 

daily basis to provide an additional check  on data product quality.  On average, 10% of 

the  daily  granule  production  will  be examined, with sampling criteria supplied by the 

AIRS Science Team. 

The result of Level 2 Quality  Assessment is a set of parameters describing retrieval 

algorithms ‘health.’  The  retrieval algorithm may fail in a number  of  ways, including 

complete breakdown of one or several parts of the  retrieval  process (e. g. the  microwave- 

only retrieval). Alternatively, individual retrieval processes may  run to completion but 

with some unusual computational characteristics (e. g. final retrieval converges only 

after very  many iterations). Additionally, quality assessment information from Level  1A 

and Level 1B  processing  may affect retrieval algorithm functioning. This information 

must  be  propagated  forward to the retrieval. An example of such a situation would  be 

when fewer than  nine  AIRS spectra (but a sufficient number for cloud-clearing) are 

available from Level 1B. The  most detailed quality assessment information  is  propagated 

into the Level 2 Quality  Assessment Support Product, produced  only  when diagnostic 

options are switched  on  in  the product generation executive. It  is intended to be  produced 

at  the  AIRS TLSCF to aid  with problem-solving. 

Many  small  quality assessment fields are included in  all  AIRS products. For each 

profile  there  are flags of processing paths  taken and continuous variables reflecting such 

parameters as  speed  and  quality of algorithm convergence. At a granule level, quality 

assessment fields include counts of per-profile flags and statistics of per-profile 

continuous variables. Some of these granule-level quality  assessment fields will  be  used 

as Product-Specific Attributes so they  can  be  used  in ordering interesting data. 
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8 IMPLEMENTATION  OVERVIEW 

8.1 AIRS Science Data  Processing  System 

The core of AIRS Science Data Processing System (SDPS) has been designed 

around  several execution units or Product  Generation Executables (PGEs); each tailored 

to process a particular level of data for AIRS,  AMSU, HSB and VIS instruments. The 

Figure  8.1  shows a high  level architecture of the AIRS SDPS. 

The  high  level capabilities of these PGEs are: 

L1A PGEs: decommutation, data-number to engineering unit conversion of 

L1B PGEs: Radiance conversion  with appropriate corrections 
engineering & geolocation 
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L2 PGE:  retrieval of cloud, surface & atmospheric state 

Each  PGE  can  be  run  independently of each other, including the  Level 2 PGE  where 

options exist to process  through to any  desired stage (e.g., microwave, first, or final 

retrievals). Not  shown are additional  PGEs. The first group are designed to provide 

summary or subset of the data products to create Browse  images to facilitate data 

ordering. The  second,  referred to as the RaObs PGE, is  designed to accumulate matchups 

between coincident radiosonde  and AIRS observations for tuning (see Section 5.5). 

8.2 Data  Storage  and  Data  Processing  Requirements 

The AIRS SDPS  requires approximately 73 GB  of archive per day. Table below 

Packets 

FIGURE 8.1 - HIGH LEVEL REPRESENTATION OF THE AIRS SDPS ARCHITECTURE OF PGES. 
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summarizes  the  various categories of data required for processing as well  as data 

produces  by  the  AIRS SDPS. 

Data  Product  Type Volume 
~ 

Level 0 data  (primary input) 13 GBIday 
Aviation forecast 

.08 GBIday  Radiosonde data 

.03 GBIday 

Level  1A products 
34 GBIday Level  1B products 
17  GBIday 

Level 2 products 
.03 GBIday Raobs  matchup file 
8 GBIday 

Browse files .4  GBIday 
Total 72.54 GBIday 

Level 0 data: 54 MB per 6 minutes (granule) of data. Total  per  day is: 54*240 or 12.96 

L1 A data: 70 MB  of level  1A for one granule of AIRS, HSB, AMSU, and VIS combined. 

L1B data: 138 MB  of level 1B for one granule of AIRS, HSB, AMSU,  and  VIS 

L2: 32 MB  of output  per granule. Total per  day is 32*240 or 7.68 GB 

GB. 

Total  per  day  is 70*240 or 16.8 GB. 

combined. Total  per day is 138*240 or 33.12 GB. 

8.3 Required input  data 

Geolocated, Calibrated Observed Radiances provided  by  L1B processing: 

AMSU-A 
HSB 
IRS 
VIS 

Static  Ancillary Data files provided  by TLSCF: 

Decommutation Map 
Constant  Sets 
Red  and  Yellow Limits 
Namelist  giving default values for L2 parameters 
AMSU  and  HSB Sidelobe Correction Matrices 
AMSU  and  HSB Sunglint Data 
AMSU  and  HSB Cold Sidelobe Interpolation Arrays 
Lists of Channels to be used at  various stages of retrieval 
Calibration Parameters for AMSU, HSB, AIRS  and  VIS 
AIRS  Channels Frequency List 
AIRS  Channels  Focal Plan Map 
AIRS  Correction Parameters and Spectral Features 
Climatology to set initial guess profiles 
Topographic data 
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e 
e 
e 
e 
e 
e 
e 
e 
e 
e 

e 
e 
e 

Transmittances for AMSU, HSB and AIRS channels 
Angle  Correction Coefficients 
Solar Radiances 
Tuning Coefficients 
Microwave Emissivity Coefficients 
Ancillary Error Estimates 
Covariance Matrices 
Eigenvector Matrices 
Radiance Regeneration Eigenvectors 
Tables of Contribution Weighting Functions 
MW to IR  regression coefficients 
Principal  Component Mode Regression Coefficients 
Principle Components for Angle Adjustment 

Dynamic and Static External Ancillary Data Files provided  at the DAAC: 

NCEP 1-Degree  Aviation  Model (AVN) Product 
Global 1 KM DEM 
Quality  Controlled  Radiosonde observations, including shipbuoy observations 
Third Generation  Vegetation  Index 

8.4 Simulation  System 

The architecture of the  AIRS  SDPS simulation system and its role in validation  and 

verification of  AIRS  products is shown  in the following figure 8.2. The current software 

has a full level 0 to level 2 data product simulation with three goals  in  mind: ( 1 )  core 

algorithm  performance  is  based  on  the simulation, (2) robustness testing of the AIRS data 

product  algorithms  is  based  partly  on simulation, (3) data product  validation requires an 

extensive simulation effort. The simulations are to be as realistic and challenging as 

possible  as  well  as extensive enough to provide a complete set of exception conditions. 
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FIGURE 8.2 - THE AIRS SIMULATION SYSTEM INCLUDES SIMULATORS TO GENERATE 
APPROPRIATE DATA FOR EVERY LEVEL 

Early  development  used  simulations  based  on 4 orbital  tracks,  each of approximately 

a  quarter  orbit in length.  Algorithm  performance  and  simple  testing  has  moved  to  focus 

on  using  a  number  of  shorter  data  granules  of  pairs  of  AMSU  scanlines  or 6 AIRS 

scanlines  (an  AIRS  data  granule is normally  135  AIRS  scanlines)  with  simple  changes to 

represent  various  geophysical  conditions  (noise-free,  noisy,  clear, cloudy, ocean,  land, 

etc.).  These  simulations of AIRS/AMSU/HSB  observations  are  based  on  the NCEP eta 

model  forecast  for  November 5, 1996.  Up  to two cloud  formations  were  present  in  each 

AIRS  footprint  with  cloud  amounts  and  cloud  top  pressures  predicted by the GCM. The 

cloud  top  pressures  and  amounts  varied  between  the  nine  AIRS  footprints  encompassed 

in  the  single  AMSU  footprint  for  which  a  retrieval  was  performed.  All  other  geophysical 

parameters,  including  surface  spectral  emissivity  and  bi-directional  reflectance,  varied  as 

well.  Results  are  shown  for  the  average of six  scan  lines  with  latitudes  and  longitudes  in 

the vicinity of 1 lN,  80E; 28N, 1 low, and ON, 1 16W.  Average cloud fractions  in  a  single 
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AMSU footprint ranged from 1 % to 69%. All cases were  accepted  by  the  rejection 

criteria described  in  section 5.4.8.6 

Figure 8.3 shows RMS layer mean temperature errors in  roughly 1 km layers 

between  the surface and 200 mb  and 3 km layers above. Results are shown for the 

microwave  product,  the AIRS regression, the first product retrieval  and the final product 

retrieval. Also indicated  on the plot are the errors in surface skin temperature as  well  as 

the average RMS error in layers from 100 mb to the surface (called trop) and 700 mb  to 

the surface. The  microwave  product  has large errors beneath 500 mb,  where  the  intrinsic 

vertical  solution  is  poor.  The  AIRS  regression guess improves over the microwave 

retrieval  in  the  mid-  lower  troposphere  but still has 2 K errors near  the surface, with  an 

average error in  the lower troposphere of 1.51 K, compared to 2.67 K for the  microwave 

retrieval. The first product  retrieval  significantly improves on  the  regression results, 

especially  beneath 200 mb. While this is the portion of the atmosphere where  results  are 

most  affected by clouds, both  the  regression  and first product results use  the same cloud 

cleared  radiances,  based  on  the first estimate of eta. The first product has an average 

RMS error of 1.0 K in the  lower troposphere, but  an error of 1.42 K in  the lowest 1 km 

layer. The final product retrieval, which benefits from the  use of improved cloud  cleared 

radiances, further improves on  the first product retrieval, with a lower tropospheric 

temperature error of 0.82 K, and a value  in  the lowest 1 km of roughly 1 K. Results 

above 100 mb  are also roughly 0.2 K better in  the  final product retrieval compared to  the 

first product. 
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Figure 8.4 shows results for the  water  vapor profile. Values  shown are for layer 

precipitable water  in  roughly 2 km layers between  the surface and 200 mb,  plus  results 

for the  layer  between 200 mb  on the top of the atmosphere. Also indicated in  the figure 

is  the error in  total precipitable water.  The  microwave  product has an error in  total 

precipitable water  of 6.8%. 2 km layer errors are  typically  in  the range 10%-25%,  with 

the exception of water vapor  between  300  mb  and 400 mb, and above 200 mb. The AIRS 

FIGURE 8.3 COMPARISON OF RETRIEVAL PERFORMANCE IN ATMOSPHERIC 
TEMPERATURE AT  EACH STAGE FROM MICROWAVE-ONLY (SECTION 5. l), FIRST 

PRODUCT  REGRESSION AND FIRST PRODUCT PHYSICAL RETRIEAVL (SECTION 5.3), 
AND THE FINAL PRODUCT  PHYSICAL RETRIEVAL (SECTION 5.4) 

regression  and first product  are poorer than  the  microwave  product  with  regard  to  total 

precipitable  water  and  water  in  the  lowest 2 km,  but significantly improve on  the 
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microwave  result  at  higher levels of the atmosphere. The first product  is also significantly 

more accurate than  the  regression guess above 800 mb. The final product  has RMS 

errors better, or slightly poorer, than 15% at  all levels in  the atmosphere and  is 

comparable to the  microwave  product  with regard to errors in  total precipitable water  and 

water  vapor  in  the lowest 2 km. 

FIGURE 8.4 COMPARISON OF RETRIEVAL PERFORMANCE IN ATMOSPHERIC 
HUMIDITY AT EACH STAGE FROM MICROWAVE-ONLY (SECTION 5. I), FIRST 

PRODUCT REGRESSION AND FIRST PRODUCT  PHYSICAL  RETRIEAVL  (SECTION 
5.3),  AND THE FINAL PRODUCT  PHYSICAL RETRIEVAL (SECTION 5.4) 

For robustness testing, a whole  day of global data is being simulated to provide 240 

full-sized AIRS granules. This is intended to help prepare  the Science Team for on-orbit 
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validation activities where similar volumes of data will be  needed,  and test the  quality 

assessment process  and the algorithm robustness. 

The full day  simulation has been centered on September 13,  1998. This was  selected 

for no other reason  than it coincided with a CAMEX-3 aircraft flight under fair weather 

conditions and there are contemporaneous NOAA-  15  AMSU-A  and -B measurements 

available. The simulation  activity  begins  with a generation of level 2 “truth” data, which 

actually  span  the  time of  03:OO  of 13 September 1998  through 03:OO  of 14 September 

1998. This data is  linearly interpolated in time, bilinearly interpolated in  the horizontal, 

and  linearly interpolated in log-pressure from the 3-, 6-,  and 9-hr forecasts of the 

Aviation  run of the NCEP weather forecasting model. The UARS  upper atmosphere 

climatology  was  used for the mid-stratosphere through  the mesosphere, and hypothetical 

models  were  prescribed for the  distribwtion  of trace gases carbon dioxide, carbon 

monoxide,  and  methane. Since the  Aviation run of the NCEP model does not forecast 

cloud liquid water  content (for this epoch), an approximate formula based  on cloud-type 

and cloud height  is  used to simulate liquid water content. The topography, land fraction, 

and  viewing  geometry are all defined  using  the  PGE toolkit. Since the toolkit-generated 

topography differs from  the NCEP surface geopotential height,  the surface pressure was 

adjusted  adiabatically  based  on  the forecast surface air temperature. The ground surface 

temperature  remained  unchanged.  Results from testing the latest  version of the Level 2 

PGE  are  expected  in  early 2000. 

8.5 Data  Product Validation 

A separate AIRS  Validation  Plan describes the detailed approach for AIRS data 

product  validation.  AIRS  product  validation activities are intertwined with instrument 

calibration and  retrieval algorithm. The former are described in the  AIRS Calibration 

Plan. Calibrated radiances  and  retrieved quantities from the AIRS system are the  result 

of a complex  flow of data from the suite of AIRS/AMSU/HSB instruments and  through 

the data processing software. There are potential sources of uncertainty at  many  points  in 

this flow, and  all  can corrupt the quantities ascribed geophysical significance. Additional 

uncertainties  come from incomplete knowledge of  the  spectral information used  in  the 
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infrared  and  microwave  forward  radiance  models (See Chapter 4.0). The ultimate 

objective of validation  is  to establish the  validity of the absolute value of the reported 

geophysical  parameters  and  equally importantly, their associated error bars. 

The first stage in  validation occurs before  launch  through instrument calibration and 

testing, accompanied by algorithm  testing  with simulated data. To first order these 

activities establish the  baseline from which on-orbit performance of the AIRS suite of 

instruments  can  be  validated. 

In  the  early  period of on-orbit operations for the second stage of validation, the  AIRS 

team  will  use  geophysical observations from many sources to provide a qualitative 

understanding of the  instruments  and  processing  system performance. Although, these 

vicarious observations are sometimes referred to as ‘truth’, they  in fact have  their  own 

uncertainties that  must  be  taken into consideration. The AIRS  team  has identified 

vicarious observations presumed to be  reasonably  well  understood. The most important 

of these include: 

radiosonde  observations of atmospheric temperature 
buoy  measurements of sea surface temperature 
ARM-CART site observations 
MODIS (EOS-Aqua) observations 
and CERES (EOS-Aqua) measurements 

The latter two  will  be  partially  validated from their  EOS-Terra observations, so that 

we  will have some  understanding of their performance on EOS-Aqua. This places bounds 

on  the  bias  and  variance of  any residuals found in  the comparisons of vicarious and AIRS 

observations. When conditions of unexpectedly large uncertainty are encountered, they 

are  taken  as a probable  indicator of problems of one of several types:  poor instrument 

calibration, spectroscopic uncertainty  in  the  forward model, incorrectly parameterized 

physics  in the cloud clearing, and  incorrect convergence within  the retrieval algorithm. 

Identifying  and correcting these error sources  will  be the major activity of the  AIRS 

Science Team in the first year  or  more of AIRS operations. 

The simplest AIRS  measurements  to  be examined first are those obtained of cloud- 

free ocean scenes. This will eliminate dependence on cloud-clearing and minimize 
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surface inhomogeneity effects on  the  observed  radiance spectrum. From there, the  next 

set of observations to be studied will include cloudy ocean scenes, then cloud-free land 

scenes, and finally cloudy  land scenes. 

Only after most of the instrument and software errors have  been corrected will  the 

third stage of validation  begin. This stage involves validating the reported error bars 

associated with  the  AIRS data products. These numbers are essential for AIRS data users 

in  any  research or operational sense. These require a sufficiently large ensemble of 

colocated, coincident measurements to  be statistically significant. 
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ABBREVIATIONS  AND  ACRONYMS 
AERI 

AIRS 

AMSU 

AMSU-A 

AMSU-B 

AVHRR 

C 

COLR 

DAAC 

DB,  dB 

EOF 

EOS 

ER-2 

ESDIS 

GHz 

GSFC 

HITRAN 

HSB 

IR 

JPL 

K 

km 

kPa 

LO" 

MHS 

Pm 

MODIS 

Atmospheric  Emitted  Radiance  Interferometer 

Atmospheric  Infrared  Sounder 

Advanced  Microwave  Sounding  Unit 

Advanced  Microwave  Sounding  Unit-A (a 20 channel  microwave 
radiometer) 

Advanced Microwave  Sounding  Unit-B  (a 5 channel  microwave 
radiometer) 

degrees  Centigrade 

Clear  Sky  Outgoing  Radiation 

Distributed  Active  Archive  Center 

decibel 

Empirical  Orthogonal  Functions 

Earth  Observing  System 

Earth  Research-2  (NASA's civilian version of the Lockheed Skunkworks 
u-2) 

Earth  Science  Distributed  Information System 

Gigahertz ( lo9 Hertz, or cycles/second) 

Goddard  Space  Flight  Center 

High  Resolution  Transmission  Molecular  Absorption  Database 

Humidity  Sounder of Brazil 

InfraRed 

Jet  Propulsion  Laboratory 

degrees  Kelvin 

kilometer ( 1 O3 meters) 

kilopascal ( lo3 pascal,  equivalent  to 10 bar) 

Level 0 through  level 4 (processing) 

Microwave  Humidity  Sounder 

micrometer,  micron ( 1 0-6 meter) 

Moderate  Resolution  Imaging  Spectroradiometer 
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MPM87 

MPM89 

MPM92 

MPM93 

MSU 

MW 

NASA 

NCEP 

NEDT 

NEAT 

NEMS 

NESDIS 

NEXRAD 

NOAA 

OLR 

RH 

SDPS 

SIRS 

SSMfT2 

THz 

TIGR 

TIROS 

TLSCF 

TOVS 

VTPR 

Millimeter-wave  Propagation  Model  (Liebe  and  Layton,  1987) 

Millimeter-wave  Propagation  Model  (Liebe,  1989) 

Millimeter-wave  Propagation  Model  (Liebe, et al,  1992) 

Millimeter-wave  Propagation  Model  (Liebe, et al,  1993) 

Microwave  Sounder  Unit 

Microwave 

National  Aeronautics  and Space Administration 

National  Center for Environmental  Prediction 

Noise  Equivalent  Temperature  Difference 

Noise  Equivalent  Temperature  Difference 

Nimbus-E  Microwave  Sounder 

National  Environmental  Satellite  Data  and  Information  Service 

Next  Generation  Radar 

National  Oceanic  and  Atmospheric  Administration 

Outgoing  Longwave  Radiation 

Relative  Humidity 

Science  Data  Processing System 

Satellite  Infrared  Radiation  Spectrometer 

Special  Sensor Microwavemater Vapor  Profiler 

terahertz ( 10l2 Hertz) 

TOVS  Initial  Guess  Retrieval 

Television  Infrared  Observation  Satellite 

Team  Leader  Science  Computing  Facility 

TIROS  Operational  Vertical  Sounder 

Vertical  Temperature  Profile  Radiometer 
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